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1. Introduction

1.1. History

Let X be a smooth and complete algebraic curve, and G a simply-connected semi-
simple algebraic group over an algebraically closed field k.1 Then we know that

C∗(BG,Λ) � SymΛ V

1 This corresponds to the case of constant group G × X over X. For simplicity’s sake, we will restrict 
ourselves to this case in the introduction.
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for some finite dimensional vector space V over Λ, where Λ is Q� when k = Fp (� �= p), 
and Λ is any field of characteristic 0 when k has characteristic 0.

Let BunG denote the moduli stack of principal G-bundles over X. In the differential 
geometric setting, i.e. when k = C, the cohomology ring of BunG was computed by 
Atiyah and Bott in [1] using Morse-theoretic methods.

Theorem 1.1.1 (Atiyah-Bott). We have the following equivalence

C∗(BunG,Λ) = SymΛ(C∗(X,V ⊗ ωX)),

where ωX is the dualizing sheaf of X.

In the recent work [7], Gaitsgory and Lurie gave a purely algebro-geometric proof of 
the theorem above in the framework of étale cohomology (see also [5] for an alternative 
perspective). In the case where X and G come from objects over k = Fq, the isomor-
phism in Theorem 1.1.1 was proved to be compatible with the Frobenius actions on both 
sides. The Grothendieck-Lefschetz trace formula for BunG then gives an expression for 
the number of k-points on BunG and hence, confirms the conjecture of Weil that the 
Tamagawa number of G is 1.

Following ideas suggested in [4], this paper aims to provide an alternative (and simpler) 
proof of one of the two main steps in the original proofs, as given in [7] and [5]. This 
is possible due to a family of new results regarding connectivity in the theory of chiral 
Koszul duality proved in this paper which are of independent interest.

1.2. Prerequisites and guides to the literature

For the reader’s convenience, we include a quick review of the necessary background 
as well as pointers to the existing literature in §2. The readers who are unfamiliar with 
the language used in the introduction are encouraged to take a quick look at §2 before 
returning to the current section.

1.3. A sketch of Gaitsgory and Lurie’s method

We will now provide a sketch of the strategy employed by [7] and [5]. In both cases, 
the proofs utilize the theory of factorization algebras. Broadly speaking, there are two 
main steps: non-abelian Poincaré duality and Verdier duality on the Ran space.

The readers who are only interested in Koszul duality in the setting of factorization 
algebras in its own rights can safely skip to §1.4.

1.3.1. Non-Abelian Poincaré duality
The first step involves a factorizable sheaf A on RanX from f!ωGrRan X

where f is the 
natural map
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f : GrRanX → RanX,

and GrRanX is the Beilinson-Drinfeld factorizable affine Grassmannian. The crucial ob-
servation is that the natural map

GrRanX → BunG

has homologically contractible fibers, and hence, we get an equivalence

C∗
c (BunG, ωBunG

) � C∗
c (RanX,A). (1.3.2)

1.3.3. Verdier duality
The right hand side of (1.3.2) is, however, not directly computable. If one thinks 

of factorizable sheaves on RanX as E2-algebras, then one reason that makes it hard to 
compute the factorization homology of A is the fact that it’s not necessarily commutative 
(i.e. not E∞). A, however, also has a commutative co-algebra structure, via the diagonal 
map2

Gr → Gr×Gr .

Thus, its Verdier dual DRanXA naturally has the structure of a commutative algebra. 
In fact, it is proved that DRanXA is a commutative factorization algebra.

1.3.4. Computing the Verdier dual
One can prove something even better: DRanXA is isomorphic to the commutative 

factorization algebra B coming from C∗(BG). Namely, the co-stalk of B at any closed 
point ιx : x ↪→ X is

ι!xB � C∗(BG)

and in fact

B|X � C∗(BG) ⊗ ωX .

A natural map from one to the other is given by a certain pairing between A and B. 
Since these are factorizable, showing that this map is an equivalence amounts to showing 
that its restriction to X is also an equivalence. This is now a purely local problem, and 
hence, for example, one can reduce it to the case of P 1 to prove it.

Remark 1.3.5. Note that in the above, co-stalk, rather than stalk, appears. This is 
because in [7,5], sheaves on (pre-)stacks are set up using the !-functors rather than 
∗-functors.

2 We are eliding a minor, but technical, point about unital vs. non-unital here.
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1.3.6. Conclusion
Note from the above that

B|X � C∗(BG) ⊗ ωX � SymV ⊗ ωX

is a free commutative algebra, where V is some explicit chain complex that we can 
compute. But factorization homology with coefficients in a free commutative factorization 
algebra is easy to compute. Hence, we conclude

C∗(BunG,Q�) � C∗
c (BunG, ωBunG

)∨

� C∗
c (RanX,A)∨

� C∗
c (RanX,DRanXA) (1.3.7)

� C∗
c (RanX,B)

� SymC∗
c (X,V ⊗ ωX).

1.4. What does this paper do?

In this paper, we prove that, under some connectivity assumptions, Koszul duality 
on the category of sheaves on the Ran space with the ⊗�-monoidal structure induces an 
equivalence of categories and that this equivalence behaves nicely with respect to Verdier 
duality on the Ran space and integrating along the Ran space, i.e. taking factorization 
homology. This equivalence is different from those appearing in [3] since the ⊗�-monoidal 
structure is not pro-nilpotent. On the other hands, our results are quite similar to those of 
Quillen [14] in the sense that by imposing certain connectivity conditions on the objects 
involved, we can turn Koszul duality into an equivalence.

Even though the results proved in the paper are of independent interest, our main 
motivation comes from the ideas sketched in [4]. While both [7] and [5] follow a similar 
strategy, the latter develops the theory of Verdier duality on prestacks and applies it to 
the case of the Ran space, resulting in a more streamlined and simpler proof of the second 
step. However, since the Ran space is a big object,3 its technical properties in relation 
to factorization homology and factorizability are difficult to establish. More precisely, it 
takes a lot of work to prove the (innocent looking) equivalence (1.3.7) and to a somewhat 
lesser extent, the fact that DRanXA is factorizable. This results in a rather complicated 
technical heart of [5]. The results proved in this paper further simplify the second step 
of the proof. More precisely, these results could be used to replace all of §8, §9, and part 
of §12 and §15 of [5].

Note also that many technical results about Verdier duality are proved only for the 
case of curves in [5], while results stated here about Koszul duality are for arbitrary 
dimension. This is in part because [5] works with more general sheaves on the Ran

3 In the terminology of [5], it’s not finitary.
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space, whereas we mostly concern ourselves with sheaves of special shapes, i.e. those of 
the form Chev g or coChev g.

1.5. An outline of our results

We will now state the main results proved in this paper.

1.5.1. Koszul duality for Lie and ComCoAlg
Let X ∈ Sch be a scheme (see §2.1.2 for our convention), and ComCoAlg�(RanX)

and Lie�(RanX) denote the categories of co-commutative co-algebra objects and Lie 
algebra objects in Shv(RanX) with respect to the ⊗�-monoidal structure. The theory 
of Koszul duality developed in [3] gives a pair of adjoint functors4

Chev : Lie�(RanX) � ComCoAlg�(RanX) : Prim[−1] (1.5.2)

Even though the pair of adjoint functors above are not mutually inverses of each other 
in general, they are when we impose certain connectivity constraints on both sides.

Theorem 1.5.3 (Theorem 3.3.3). Suppose X is smooth over k. Then we have the following 
commutative diagram

Lie�(RanX)≤cL
Chev

Prim[−1]
ComCoAlg�(RanX)≤ccA

Lie�(X)≤cL
Chev

Prim[−1]
coFact�(X)≤ccA

where ≤ cL and ≤ ccA denote the connectivity constraints given in Definition 3.3.1, and 
where Chev and Prim[−1] are the functors coming from Koszul duality.

1.5.4. Koszul duality for coLie and ComAlg
Let ComAlg�(RanX) and coLie�(RanX) denote the categories of commutative alge-

bra objects and co-Lie co-algebra objects in Shv(RanX) with respect to the ⊗�-monoidal 
structure. As above, we have the following pair of adjoint functors5

coPrim[1] : ComAlg�(RanX) � coLie�(RanX) : coChev .

4 Strictly speaking, we are using the category ComCoAlgind-nilp of ind-nilpotent commutative co-algebras. 
However, we will see easily that, subject to an appropriate connectivity assumption of sheaves on RanX, 
this category coincides with the category ComCoAlg.
5 See also footnote 4.
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Unlike the case of Lie� and ComCoAlg�, for a co-Lie algebra g ∈ coLie�(X),

coChev(g) ∈ ComAlg�(RanX)

doesn’t necessarily live inside Fact�(X). However, we have the following

Theorem 1.5.5 (Theorem 4.1.3). Restricted to the full subcategory coLie�(X)≥1, where 
we are using the perverse t-structure on X, the functor coChev factors through Fact�, 
i.e.

coLie�(X)≥1

coChev

coChev ComAlg�(RanX)

Fact�(X)

1.5.6. Interaction between coChev and factorization homology
In [3], it is proved that the functor of taking factorization homology

C∗
c : Shv(RanX) → Vect

commutes with Chev. This is because Chev is computed as a colimit, and moreover, C∗
c

has the following two useful properties

(i) C∗
c is symmetric monoidal with respect to the ⊗�-monoidal structure on Shv(RanX)

and the usual monoidal structure on Vect, and
(ii) C∗

c is continuous.

The functor coChev, however, is constructed as a limit, so we need some extra condi-
tions to make it behave nicely with C∗

c .

Theorem 1.5.7 (Theorem 5.1.2). Let X be a proper scheme of pure dimension d and 
g ∈ coLie�(X)≥d+1. Then we have a natural equivalence

C∗
c (RanX, coChev g) � coChev(C∗

c (RanX, g)).

1.5.8. Chev, coChev and Verdier duality
Unsurprisingly, the functors Chev and coChev mentioned above are linked via the 

Verdier duality functor on RanX.

Theorem 1.5.9 (Theorem 5.3.1). Let g ∈ Lie�(X)≤−1, where we are using the perverse 
t-structure on X. Then we have the following natural equivalence

DRanX Chev g � coChev(DXg).
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Remark 1.5.10. The connectivity constraint Lie�(X)≤−1 is, as we shall see, less strict 
than the connectivity constraint Lie�(X)≤cL required by Theorem 1.5.3.

Corollary 1.5.11. Let g ∈ Lie�(X)≤cL . Then

DRanX Chev g � coChev(DXg)

is factorizable.

Proof. This is a direct consequence of Theorem 1.5.5 and Theorem 1.5.9. �
1.6. Relation to the Atiyah-Bott formula

Our results could be used to simplify the second step of the proof of the Atiyah-Boot 
formula in two places, which we will sketch in §1.6.1 and §1.6.2 below. A more detailed 
exposition will be given in §6.

1.6.1. Factorizability of DRanX Chev a
The initial observation is that the sheaf A mentioned above lies in the essential image 

of Chev, i.e.

A � Chev(a), for some a ∈ Lie�(X)≤cL .

This is a direct result of Theorem 1.5.3 and the fact that A satisfies this connectivity 
constraint on the ComCoAlg� side.

As mentioned above, we have a pairing

A�B → δ!ωRanX ,

which induces a map

B → DRanXA,

compatible with the commutative algebra structures on both sides. Thus, we get a map

B → DRanX Chev(a) � coChev(DXa),

which we want to be an equivalence. By construction, the LHS is factorizable. Corol-
lary 1.5.11 can be used to show that the RHS is also factorizable. Thus it suffices to show 
that they are isomorphic over X, which is now a local problem, and the same proof as 
in [5] applies.
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1.6.2. Verdier duality vs. linear dual
The results proved in this paper could also be used to give an alternative proof of the 

equivalence

C∗
c (RanX,DRanXA) � C∗

c (RanX,A)∨.

at (1.3.7). Indeed, we have

C∗
c (RanX,DRanXA) � C∗

c (RanX,DRanX Chev a)

� C∗
c (RanX, coChevDXa) (Theorem 1.5.9)

� coChev(C∗
c (X,DXa)) (Theorem 1.5.7)

� coChev(C∗
c (X, a)∨)

� Chev(C∗
c (X, a))∨ (Theorem 1.5.9 for X = pt)

� C∗
c (RanX,Chev a)∨ ([3, Proposition 6.3.6])

� C∗
c (RanX,A)∨

2. Preliminaries

In this section, we will set up the language and conventions used throughout the 
paper. Since the material covered here are used in various places, the readers should feel 
free to skip it and backtrack when necessary.

The mathematical content in this section has already been treated elsewhere. Hence, 
results are stated without any proof, and we will do our best to provide the necessary 
references. It is important to note that it is not our aim to be exhaustive. Rather, we 
try to familiarize the readers with the various concepts and results used in the text, as 
well as to give pointers to the necessary references for the background materials.

2.1. Notation and conventions

2.1.1. Category theory
We will use DGCat to denote the (∞, 1)-category of stable infinity categories, 

DGCatpres to denote the full subcategory of DGCat consisting of presentable categories, 
and DGCatpres,cont the (non-full) subcategory of DGCatpres where we restrict to continu-
ous functors, i.e. those commuting with colimits. Spc will be used to denote the category 
of spaces, or more precisely, ∞-groupoids.

The main references for this subject are [12] and [13]. For a slightly different point of 
view, see also [8].

2.1.2. Algebraic geometry
Throughout this paper, k will be an algebraically closed ground field. We will denote 

by Sch the ∞-category obtained from the ordinary category of separated schemes of 
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finite type over k. All our schemes will be objects of Sch. A scheme X ∈ Sch is said to 
be smooth if it is smooth over k.

In most cases, we will use the calligraphic font to denote prestacks, for e.g. X, Y etc., 
and the usual font to denote schemes, for e.g. X, Y etc.

2.1.3. t-Structures
Let C be a stable infinity category, equipped with a t-structure. Then we have the 

following diagram of adjoint functors

C≤0
i≤0

C
tr≤0

tr≥1

C≥1
i≥1

We use τ≤0 and τ≥1 to denote

τ≤0 = i≤0 ◦ tr≤0 : C → C

and

τ≥1 = i≥1 ◦ tr≥1 : C → C

respectively.
Shifts of these functors, for e.g. τ≥n and τ≤n, are defined in the obvious ways.

2.2. Prestacks

The theory of sheaves on prestacks has been developed in [7] and [5]. In this subsection 
and the next, we will give a brief review of this theory, including the definition of the 
category of sheaves as well as various pull and push functors. We will state them as facts, 
without any proof, which (unless otherwise specified), could all be found in [5].

2.2.1. A prestack is a contravariant functor from Sch to Spc, i.e. a prestack Y is a functor

Y : Schop → Spc.

Let PreStk be the ∞-category of prestacks. Then by Yoneda’s lemma, we have a fully-
faithful embedding

Sch ↪→ PreStk.

2.2.2. Properties of prestacks
Due to categorical reasons, any prestack Y can be written as a colimit of schemes

Y � colim Yi.

i∈I
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2.2.3. A prestack is said to be is a pseudo-scheme if it could be written as a colimit of 
schemes, where all morphisms are proper.

2.2.4. A prestack is pseudo-proper if it could be written as a colimit of proper schemes. 
It is straightforward to see that pseudo-proper prestacks are pseudo-schemes.

2.2.5. A prestack is said to be finitary if it could be expressed as a finite colimit of 
schemes.

2.2.6. We also have relative versions of the definitions above in an obvious manner. 
Namely, we can speak of a morphism f : Y → S, where Y is a prestack and S is a 
scheme, being pseudo-schematic (resp. pseudo-proper, finitary).

2.2.7. More generally, a morphism

f : Y1 → Y2

is said to be pseudo-schematic (resp. pseudo-proper, finitary) if for any scheme S, 
equipped with a morphism S → Y2, the morphism fS in the following pull-back dia-
gram

S ×Y2 Y1

fS

Y1

S Y2

is pseudo-schematic (resp. pseudo-proper, finitary).

2.3. Sheaves on prestacks

As we mentioned above, proofs of all the results in mentioned in this section, unless 
otherwise specified, could be found in [5].

2.3.1. Sheaves on schemes
We will adopt the same conventions as in [5], except that for simplicity, we will restrict 

ourselves to the “constructible setting.” Namely, for a scheme S,

(i) when the ground field is C, and Λ is an arbitrary field of characteristic 0, we take 
Shv(S) to be the ind-completion of the category of constructible sheaves on S with 
Λ-coefficients.

(ii) for any ground field k in general, and Λ = Q�, Q� with � �= char k, we take Shv(S)
to be the ind-completion of the category of constructible �-adic sheaves on S with 
Λ-coefficients. See also [7, §4], [10], and [11].
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The theory of sheaves on schemes is equipped with the various pairs of adjoint functors

f! � f ! and f∗ � f∗

for any morphism

f : S1 → S2

between schemes. Moreover, we have box-product � as well as ⊗ and 
!
⊗.

2.3.2. Throughout the text, we will use the perverse t-structure on Shv(S), when S is a 
scheme.

2.3.3. We will also use Vect to denote the category of sheaves on a point, i.e. Vect denotes 
the (infinity derived) category of chain complexes in vector spaces over Λ.

2.3.4. Sheaves on prestacks
For a prestack Y, the category Shv(Y) is defined by

Shv(Y) = lim
S∈(Schop

/Y)
Shv(S),

where the transition functor we use is the !-pullback.
Informally speaking, an object F ∈ Shv(Y) is the same as the following data

(i) a sheaf FS,y ∈ Shv(S) for each S ∈ Sch and y : S → Y (i.e. y ∈ Y(S)), and
(ii) an equivalence of sheaves FS′,f(y) → f !FS,y for each morphism of schemes f : S′ →

S.

Moreover, we require that this assignment satisfies a homotopy-coherent system of com-
patibilities.

2.3.5. More formally, one can define Shv(Y) as the right Kan extension of

Shv : Schop → DGCatpres,cont

along the Yoneda embedding

Schop ↪→ PreStkop.

Thus, by formal reasons, the functor

Shv : PreStkop → DGCatpres,cont
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preserves limits. In other words, we have

Shv(colim
i

Yi) � lim
i

Shv(Yi).

In particular, if a prestack

Y � colim
i∈I

Yi

is a colimit of schemes, then

Shv(Y) � lim
i∈I

Shv(Yi).

2.3.6. Now, if we replace all the transition functors by their left adjoints, namely the 
!-pushforward, then we have a diagram

Iop → DGCatpres,cont,

and we have a natural equivalence

Shv(Y) � colim
i∈Iop

Shv(Yi)

where the colimit is taken inside DGCatpres,cont.

2.3.7. Let

Y = colim
i

Yi

be a prestack, and denote

insi : Yi → Y

the canonical map. Then, for any sheaf F ∈ Shv(Y), we have the following natural 
equivalence

F � colim
i

insi! ins!i F (2.3.8)

2.3.9. f! � f !

Let

f : Y1 → Y2

be a morphism between prestacks. Then by restriction, we get a functor
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f ! : Shv(Y2) → Shv(Y1),

which commutes with both limits and colimits. In particular, f ! admits a left adjoint f!.6
The functor f! is generally not computable. However, there are a couple of cases where 

it is.

2.3.10. The first instance is when the target of f is a scheme

f : Y → S,

and suppose that

Y � colim
i

Yi.

Then, by (2.3.8), we have

f!F � colim f! insi! ins!i F � colim fi! ins!i F.

where

fi : Yi → Y → S

is just a morphism between schemes.

2.3.11. The second case is where f is pseudo-proper, then f! satisfies the base change the-
orem with respect to the (−)!-pullback. Namely, for any pull-back diagram of prestacks

Y′
1

f

g
Y1

f

Y′
2

g
Y2

and any sheaf F ∈ Shv(Y), we have a natural equivalence

g!f!F � f!g
!F.

Thus, in particular, if we have a pull-back diagram

S ×Y2 Y1

fS

iS
Y1

f

S
iS

Y2

6 It also admits a right adjoint. However, we do not make use of it in this paper.
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where S is a scheme, then

i!Sf!F � fS!i
!
SF

and as discussed above, fS! could be computed as an explicit colimit.

2.3.12. Let F ∈ Shv(Y). Then we denote by

C∗
c (Y,F) = s!F,

where

s : Y → Spec k

is the structural map of Y to a point.

2.3.13. In case where F � ωY is the dualizing sheaf on Y (characterized by the fact that 
its (−)!-pullback to any scheme is the dualizing sheaf on that scheme), then we write

C∗(Y) = C∗
c (Y, ωY),

and

Cred
∗ (Y) = Fib(C∗(Y) → Λ).

2.3.14. f∗ � f∗
When

f : Y1 → Y2

is a schematic morphism between prestacks, one can also define a pair of adjoint functors 
(see [5] where the functor f∗ is defined, and [9] where the adjunction is constructed)

f∗ : Shv(Y2) � Shv(Y1) : f∗.

2.3.15. The behavior of f∗ is easy to describe, due to the fact that f∗ satisfies the base 
change theorem with respect to the (−)!-pullback functor. Namely, suppose F ∈ Shv(Y1)
and we have a pullback square where S2 (and hence, S1) is a scheme

S1
g

fS

Y1

f

S2
g

Y2
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Then, the pullback could be described in classical terms, since

g!f∗F � fS∗g
!F, (2.3.16)

where fS is just a morphism between schemes.

2.3.17. The functor f∗ is slightly more complicated to describe. However, when

f : Y1 → Y2

is étale, which is the case where we need, we have a natural equivalence (see [9, Prop. 
2.7.3])

f ! � f∗. (2.3.18)

2.3.19. We will also need the following fact in the definition of commutative factorizable 
co-algebras: let

U
f

Z
g

X

be morphisms between prestacks, where g is finitary pseudo-proper, f and h = g ◦ f are 
schematic. Then we have a natural equivalence (see [9, Prop. 2.10.4])

g! ◦ f∗ � (g ◦ f)∗ � h∗. (2.3.20)

2.3.21. Monoidal structure
The theory of sheaves on prestacks discussed so far naturally inherits the box-tensor 

structure from the theory of sheaves on schemes. Namely, let Fi ∈ Shv(Yi) where Yi’s 
are prestacks, for i = 1, 2. Then, for any pair of schemes S1, S2 equipped with maps

fi : Si → Yi,

we have

(f1 × f2)!(F1 � F2) � f !
1F1 � f !

2F2.

Pulling back along the diagonal

δ : Y → Y× Y

for any prestack Y, we get the 
!
⊗-symmetric monoidal structure on Y in the usual way. 

More explicitly, for F1, F2 ∈ Shv(Y), we define

F1
!
⊗ F2 = δ!(F1 � F2).
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2.4. The Ran space/prestack

The Ran space (or more precisely, prestack) of a scheme plays a central role in this 
paper. The Ran space, along with various objects on it, was first studied in the seminal 
book [2] in the case of curves, and was generalized to higher dimensions in [3]. In what 
follows, we will quickly review the main definitions and results. For proofs, unless other-
wise specified, we refer the reader to [5] and [3]. The topologically inclined reader could 
also find an intuitive introduction in [9, §1].

2.4.1. For a scheme X ∈ Sch, we will use RanX to denote the following prestack: for 
each scheme S ∈ Sch,

(RanX)(S) = {non-empty finite subsets of X(S)}

Alternatively, one has

RanX � colim
I∈fSetsurj,op

XI

where fSetsurj denotes the category of non-empty finite sets, where morphisms are sur-
jections.

Using the fact that X is separated, one sees easily that RanX is a pseudo-scheme. 
Moreover, when X is proper, RanX is pseudo-proper.

2.4.2. The ⊗� monoidal structure
There is a special monoidal structure on RanX which we will use throughout the 

text: the ⊗�-monoidal structure.
Consider the following map

union : RanX × RanX → RanX

given by the union of non-empty finite subsets of X. One can check that union is finitary 
pseudo-proper. Given two sheaves F, G ∈ Shv(RanX), we define

F ⊗� G = union!(F � G).

This defines the ⊗�-monoidal structure on Shv(RanX).

2.4.3. Since union is pseudo-proper, ⊗� has an easy presentation. Namely, for

F1,F2, . . . ,Fk ∈ Shv(RanX),

and any non-empty finite set I, we have the following



18 Q.P. Ho / Advances in Mathematics 392 (2021) 107992
(F1 ⊗� F2 ⊗� · · · ⊗� Fk)| ◦
XI

�
⊕

I=
⋃k

i=1 Ii

Δ!
	k

i=1Ii�∪k
i=1Ii

(F1 � · · ·� Fk)| ◦
XI

(2.4.4)

where 
◦
XI denotes the open subscheme of XI given by the condition that no two “coor-

dinates” are equal, and where

Δ	k
i=1Ii�∪k

i=1Ii
: XI ↪→

∏
i

XIi

is the map induced by the surjection

k�
i=1

Ii �
k⋃

i=1
Ii � I.

2.4.5. Factorizable sheaves
Using the ⊗�-monoidal structure on Shv(RanX), one can talk about various types of 

algebras/coalgebras in Shv(RanX). The ones that are of importance to us in this papers 
are

ComAlg�(RanX), Lie�(RanX), ComCoAlg�(RanX), coLie�(RanX).

As the name suggests, these are used, respectively, to denote the categories of com-
mutative algebras, Lie algebras, co-commutative co-algebras and co-Lie co-algebras in 
Shv(RanX) with respect to the ⊗�-monoidal structure defined above.

2.4.6. We use Lie�(X) and coLie�(X) to denote the full subcategories of Lie�(RanX) and 
coLie�(RanX) respectively, consisting of objects whose supports are inside the diagonal

insX : X ↪→ RanX

of RanX.

2.4.7. Let

j : (RanX)ndisj → (RanX)n

where (RanX)ndisj is the open sub-prestack of (RanX)n defined by the following condi-
tion: for each scheme S, (RanX)n(S) consists of n non-empty subsets of X(S), whose 
graphs are pair-wise disjoint.

2.4.8. Let

A ∈ ComCoAlg�(RanX).
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Then, by definition, we have the following map (which is the co-multiplication of the 
commutative co-algebra structure)

A → A⊗� A⊗� · · · ⊗� A � union!(A� · · ·�A).

Using the unit map of the adjunction j∗ � j∗, we get the following map

union!(A� · · ·�A) → union!j∗j
∗(A� · · ·�A) � (union ◦ j)∗j!(A� · · ·�A),

where for the equivalence, we made use of (2.3.18) and (2.3.20).
Altogether, we get a map

A → (union ◦ j)∗j!(A� · · ·�A)

and hence, by adjunction and (2.3.18), we get a map

j!union!A → j!(A� · · ·�A). (2.4.9)

Definition 2.4.10. A is a commutative factorization algebra if the map (2.4.9) is an equiv-
alence for all n’s. We use coFact�(X) to denote the full subcategory of ComAlg�(RanX)
consisting of co-commutative factorization co-algebras.

2.4.11. Let

B ∈ ComAlg�(RanX).

Then, by definition, we have the following map (which is the multiplication of the com-
mutative algebra structure)

union!(B�B� · · ·�B) � B⊗� B⊗� · · · ⊗� B → B.

This induces the following map of sheaves

B� · · ·�B → union!B

on (RanX)n, and hence, a map of sheaves

j!(B� · · ·�B) → j!union!B. (2.4.12)

on (RanX)ndisj.

Definition 2.4.13. B is a commutative factorization algebra if the map (2.4.12) is an equiv-
alence for all n’s. We use Fact�(X) to denote the full subcategory of ComAlg�(RanX)
consisting of commutative factorization algebras.
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2.5. Koszul duality

In this subsection, we will quickly review various concepts and results in the theory of 
Koszul duality that are relevant to us. This theory, initially developed in [14], illuminates 
the duality between co-commutative co-algebras and Lie algebras. It was further devel-
oped and generalized in the operadic setting in [6]. In the chiral/factorizable setting, 
the paper [3] provides us with necessary technical tools and language to carry out many 
topological arguments in the context of algebraic geometry. The results and definitions 
we review below could be found in [3] and [8].

2.5.1. Symmetric sequences
Let VectΣ denote the category of symmetric sequences. Namely, its objects are collec-

tions

O = {O(n), n ≥ 1},

where each O(n) is an object of Vect, acted on by the symmetric group Σn.
The infinity category VectΣ is equipped with a natural monoidal structure, which we 

denote by �, and which makes the functor

VectΣ → Fun(Vect,Vect)

given by the following formula

O � V =
⊕
n

(O(n) ⊗ V ⊗n)Σn

symmetric monoidal.

2.5.2. Operads and co-operads
By an operad (resp. co-operad), we will mean an augmented associative algebra (resp. 

co-algebra) object in VectΣ, with respect to the monoidal structure described above. We 
use Op (resp. coOp) to denote the categories of operads (resp. co-operads).

In general, the Bar and coBar construction gives us the following pair of adjoint 
functors

Bar : Op � coOp : coBar .

For an operad O (resp. co-operad P), we also use O∨ (resp. P∨) to denote Bar(O) (resp. 
coBar(P)).

Remark 2.5.3. In what follows, we will adopt the following convention: all our oper-
ads/co-operads will have the property that the augmentation map is an equivalence 
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when restricted to O(1) (resp. P(1)). And under this restriction, one can show that the 
following unit map

O → coBar ◦Bar(O),

or in a slightly different notation

O → (O∨)∨,

is an equivalence.

2.5.4. Algebras and co-algebras
Let C be a stable presentable symmetric monoidal ∞-category compatibly tensored 

over Vect. Then, an operad O (resp. co-operad P) naturally defines a monad (resp. 
comonad) on C.

Thus, for an operad O (resp. co-operad P), one can talk about the category of algebras 
O -alg(C) (resp. co-algebras P -coalg(C)) in C with respect to the operad O (resp. co-
operad P).

As usual (as for any augmented monad), one has the following pairs of adjoint functors

FreeO : C � O -alg(C) : oblvO and BarO : O -alg(C) � C : trivO

for an operad O, and similarly, the following pairs of adjoint functors

oblvP : P -coalg(C) � C : coFreeP and cotrivP : C � P -coalg(C) : coBarP

for a co-operad P.

2.5.5. Koszul duality
The functors mentioned above could be lifted to get a pair of adjoint functors

Barenh : O -alg(C) � P -coalg(C) : coBarenh (2.5.6)

where P = O∨ and

oblvP ◦ Barenh
O � BarO and oblvO ◦ coBarenh

P � coBarP .

2.5.7. Turning Koszul duality into an equivalence
In general, the pair of adjoint functors at (2.5.6) is not an equivalence. One of the main 

achievements of [3] is to formulate a precise sufficient condition on the base category C, 
namely the pro-nilpotent condition,7 which turns (2.5.6) into an equivalence.

7 The interested reader could read more about this in [3], since we do not need this fact in the current 
work.
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One of the main technical points of our paper is to prove another case where Koszul 
duality is still an equivalence, even when the categories involved are not pro-nilpotent.

The two main instances of Koszul duality that are important in this paper are the 
duality between Lie-algebras and ComCoAlg-algebras, and coLie-algebras and ComAlg-
algebras.

2.5.8. The case of Lie and ComCoAlg
We have the following equivalence of co-operads (see [3]):

Lie∨ � ComCoAlg[1],

where

ComCoAlg[1](n) � k[n− 1]

is equipped with the sign action of the symmetric group Σn. Here, [n] denotes cohomo-
logical shift to the left by n.

Equivalently, the functor

[1] : C → C

gives rise to an equivalence of categories

[1] : ComCoAlg[1](C) � ComCoAlg(C).

This gives us the following diagram

Lie(C)

Chev
[1]

BarLie
ComCoAlg[1](C)

coBarComCoAlg[1]

[1]

Lie[−1](C)

[−1]

BarLie[−1]

ComCoAlg(C)
coBarComCoAlg

[−1]
Prim[−1]

We usually use Chev to denote

Chev � [1] ◦ BarLie � BarLie[−1] ◦[1] (2.5.9)

and Prim[−1] to denote

Prim[−1] � coBarComCoAlg[1] ◦[−1] � [−1] ◦ coBarComCoAlg . (2.5.10)
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2.5.11. The case of coLie and ComAlg
Dually, we have the following equivalence of co-operads

ComAlg∨ � coLie[1],

and similar to the above, the functor

[1] : C → C

gives rise to an equivalence of categories

[1] : coLie[1](C) � coLie(C).

2.5.12. This gives us the following diagram

ComAlg(C)

coPrim[1]
[1]

BarComAlg

coLie[1](C)
coBarcoLie[1]

[1]

ComAlg[−1](C)

[−1]

BarComAlg[−1]

coLie(C)
coBarcoLie

[−1]
coChev

As above, we usually use coChev to denote

coChev = [−1] ◦ coBarcoLie � coBarcoLie[1] ◦[−1]

and coPrim[1] to denote

coPrim[1] = [1] ◦ BarComAlg � BarComAlg[−1] ◦[1].

3. Turning Koszul duality into an equivalence

The goal of this section is to prove Theorem 1.5.3. We will start with Theorem 3.1.1, 
which examines the special case where X is just a point, i.e. Shv(RanX) � Shv(X) �
Vect, and prove that Koszul duality induces a natural equivalence of categories

Chev : Lie(Vect≤−1) � ComCoAlg(Vect≤−2) : Prim[−1].

Note that this is a classical result of Quillen [14], and our proof could be viewed as a 
recast of his under the light of higher algebra. This point of view allows us to generalize 
the result to the more general case of interest. Note also that this case is not strictly 
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needed in the proof of the general case. We do, however, recommend the reader to first 
read it before moving on to the proof of Theorem 3.3.3 since it contains all the essential 
points without the complicated notation employed in the general case to deal with the 
combinatorics of the Ran space.

3.1. The case of Lie- and ComCoAlg-algebras inside Vect

We will now prove the following

Theorem 3.1.1. Chev and Prim[−1] give rise to a pair of mutually inverse functors

Chev : Lie(Vect≤−1) � ComCoAlg(Vect≤−2) : Prim[−1]

Remark 3.1.2. Since Chev is defined as a colimit, it is easy to see that Chev |Lie(Vect≤−1)
lands in the correct subcategory cut out by the connectivity assumption Vect≤−2 (the 
extra shift to the left is due to (2.5.9)). It is, however, not a priori obvious for Prim[−1], 
being defined as a limit. Nonetheless, this fact is a direct consequence of Lemma 3.1.10
and Corollary 3.1.11.

Remark 3.1.3. Unless otherwise specified, when it makes sense our functors will be au-
tomatically restricted to the subcategories with the appropriate connectivity conditions. 
For example, we will write Chev instead of Chev |Lie(Vect≤−1) in most cases.

Remark 3.1.4. Note that Theorem 3.1.1 can be proved more generally for a presentable 
symmetric monoidal stable infinity category with a t-structure satisfying some mild prop-
erties. The pair of operad and co-operad Lie and ComCoAlg could also be made more 
general. See Remarks 3.1.17 and 3.1.18.

3.1.5. To prove that Chev and Prim[−1] are mutually inverse functors, it suffices to 
show that the left adjoint functor, Chev, is fully-faithful, and the right adjoint functor, 
Prim[−1] is conservative. We start with the following result, whose proof is carried out 
in §3.1.13 after some preparation.

Lemma 3.1.6. The functor Prim[−1]|ComCoAlg(Vect≤−2) satisfies the following conditions

(i) Prim[−1] commutes with sifted colimits.
(ii) The natural map

FreeLie → Prim[−1] ◦ trivComCoAlg

is an equivalence.



Q.P. Ho / Advances in Mathematics 392 (2021) 107992 25
As in [3, §4.1.8], this immediately implies the following corollary. For the sake of 
completeness, we include the proof here.

Corollary 3.1.7. Chev |Lie(Vect≤−1) is fully faithful.

Proof. It suffices to show that the unit map

id → Prim[−1] ◦ Chev

is an equivalence. Since Prim[−1] commutes with sifted colimits by part (i) of 
Lemma 3.1.6, it suffices to show that the following is an equivalence

FreeLie → Prim[−1] ◦ Chev ◦FreeLie,

since any Lie-algebra could be written as a sifted colimit of the free ones.8 However, we 
know that (even without the connectivity condition)

Chev ◦FreeLie � trivComCoAlg

and hence, it suffices to show that

FreeLie → Prim[−1] ◦ trivComCoAlg .

But now, we are done due to part (ii) of Lemma 3.1.6. �
3.1.8. Before proving Lemma 3.1.6, we start with a couple of preliminary observations. 
In essence, the lemma is a statement about commuting limits and colimits. In a stable 
infinity category, if, for instance, the limit is a finite one, then one can always do that. 
In our situation, coBar causes troubles because it is defined as an infinite limit.

The main idea of the proof is that when

c ∈ ComCoAlg(Vect≤−2),

then even though

coBarComCoAlg(c)

is computed as an infinite limit, each of its cohomological degrees will be controlled by 
only finitely many of terms in the limit.

8 This fact applies to the category of algebras over any operad in general.
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3.1.9. For brevity’s sake, we will use P to denote the co-operad ComCoAlg. Recall that 
in general, for any

c ∈ ComCoAlg(Vect),

we have

coBarP(c) = Tot(coBar•P(c))

where coBar•P(c) is a co-simplicial object.
Let

coBarnP(c) = Tot(coBar•P(c)|Δ≤n)

be the limit over the restriction of the co-simplicial object to Δ≤n. Then we have the 
following tower

c � coBar0P(c) ← coBar1P(c) ← · · · ← coBarnP(c) ← · · ·

and

coBarP(c) � lim
n

coBarnP(c).

Lemma 3.1.10. Let

c ∈ ComCoAlg(Vect≤−2).

Then, for all n ≥ 0, the following natural map

tr≥−2n+1+n+1 coBarnP(c) → tr≥−2n+1+n+1 coBarn−1
P (c).

is an equivalence.

Proof. Let Fn(c) denote the difference between coBarnP(c) and coBarn−1
P (c),

Fn(c) = Fib(coBarnP(c) → coBarn−1
P (c)).

Then for

c ∈ ComCoAlg(Vect≤−2),

we see that

Fn(c) ∈ Vect≤−2·2n+n � Vect≤−2n+1+n.
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Indeed, this is because of the fact that c ∈ Vect≤−2 and hence, in the direct sum

coBar•P(c)([n]) =
⊕
m≥1

P�n(m) ⊗Sm
c⊗m,

m = 2n is the first summand where we have non-degenerate “(co-)cells.” The shift to the 
right by n is due to the fact that we are at level n of the co-simplicial object.

As a consequence,

tr≥−2n+1+n+1 coBarnP(c) → tr≥−2n+1+n+1 coBarn−1
P (c)

is an equivalence and we are done. �
Corollary 3.1.11. Let

c ∈ ComCoAlg(Vect≤−2).

Then, for any n, the following natural map

tr≥−n coBarP(c) → tr≥−n coBarmP (c)

is an equivalence for all m � 0, where the bound depends only on n.

Proof. The lemma follows from the general situation considered below. Suppose we have 
a sequence X0 ← X1 ← · · · and integers n, m such that

F i = Fib(Xi → Xm) ∈ Vect≤−n−2

for all i ≥ m. Let X = limXi and note that

Fib(X → Xm) � Fib( lim
i≥m

Xi → Xm) � lim
i≥m

Fib(Xi → Xm) = lim
i≥m

F i.

But now, the sequential limit can be computed as the fiber of two infinite products, 
i.e. we have the following fiber sequence

lim
i≥m

F i →
∏

F i →
∏

F i.

Since the last two terms belong to Vect≤−n−1, so is the first term. Therefore,

tr≥−n X � tr≥−n Xm

and the proof concludes. �
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Remark 3.1.12. In the proof above, we use the fact that Vect≤0 is preserved under count-
able products in Vect, or equivalently, that countable products are exact with respect to 
the usual t-structure on Vect. However, since the estimate appearing in (3.1.10) tends 
to −∞, the conclusion of Corollary 3.1.11 still holds true when countable products are 
only known to have uniformly bounded cohomological amplitude, i.e. there exists a fixed 
N such that 

∏
i Vi lives in cohomological degrees ≤ N for any family (Vi)i∈N such that 

Vi lives in cohomological degrees ≤ 0 for each i.

3.1.13. We will now complete the proof of Lemma 3.1.6.

Proof of Lemma 3.1.6. The proof is now simple. In fact, we will only prove part (i), as 
the other one is almost identical. Note that due to (2.5.10), what we prove about coBarP
implies the corresponding statement of Prim[−1], up to a shift.

It suffices to show that for all n, we have

tr≥−n coBarP(colim
α

cα) � tr≥−n colim
α

coBarP(cα)

where α runs over some sifted diagram. But now, from Corollary 3.1.11, for all m � 0, 
we have

tr≥−n coBarP(colim
α

cα) � tr≥−n coBarmP (colim
α

cα) � tr≥−n colim
α

coBarmP (cα)

� colim
α

tr≥−n coBarmP (cα)

� colim
α

tr≥−n coBarP(cα) � tr≥−n colim
α

coBarP(cα). �
Remark 3.1.14. The cohomological estimate done above implies that

coBarComCoAlg(c) ∈ Lie[−1](Vect≤−2),

or equivalently, that

Prim[−1](c) ∈ Lie(Vect≤−1),

when

c ∈ ComCoAlg(Vect≤−2).

Indeed, from Corollary 3.1.11, we know that for some m � 0,

tr≥−1 coBarP(c) � tr≥−1 coBarmP (c),

and moreover, a downward induction using Lemma 3.1.10 shows that

tr≥−1 coBarmP (c) � tr≥−1 coBar0P(c) � tr≥−1 c � 0.
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3.1.15. The following result concludes the proof of Theorem 3.1.1.

Lemma 3.1.16. The functor

Prim[−1] : ComCoAlg(Vect≤−2) → Lie(Vect≤−1)

is conservative.

Proof. It suffices to show that

coBarP : ComCoAlg(Vect≤−2) → Lie[−1](Vect≤−2)

is conservative, and we will prove that by contradiction. Namely, let

f : c1 → c2

be a morphism in ComCoAlg(Vect≤−2) such that f is not an equivalence. Suppose that

coBarP(f) : coBarP(c1) → coBarP(c2)

is an equivalence, we will derive a contradiction.
Let k be the smallest number such that

tr≥−k(f) : tr≥−k c1 → tr≥−k c2

is not an equivalence. Now, by Corollary 3.1.11, we know that there is some m � 0 such 
that

tr≥−k coBarP(ci) � tr≥−k coBarmP (ci)

for i ∈ {1, 2}. Thus, we know that

tr≥−k coBarmP (c1) → tr≥−k coBarmP (c2)

is an equivalence.
By an estimate similar to the one at Lemma 3.1.10, we will show that

tr≥−k F
n(c1) � tr≥−k F

n(c2)

for all n ≥ 1, where F ∗(−) denotes the fiber as in the proof of Lemma 3.1.10. Indeed, 
the difference between Fn(c1) and Fn(c2) lies in cohomological degrees

≤ −2(2n − 1) − k + n = −2n+1 − k + n + 2 < −k, ∀n ≥ 1.
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And hence, a downward induction, starting from n = m, using the diagram

Fn(c1) coBarnP(c1) coBarn−1
P (c1)

Fn(c2) coBarnP(c2) coBarn−1
P (c2)

implies that

τ≥−kc1 � τ≥−kc2,

which contradicts our original assumption. Hence, we are done. �
Remark 3.1.17. Note that the proof we gave above could be carried out in a more general 
setting. Namely, the only properties of Vect that we used are

(i) The symmetric monoidal structure is right exact (namely, it preserved Vect≤0).
(ii) The t-structure on Vect is left separated.
(iii) Countable products have uniformly bounded cohomological amplitude (see Re-

mark 3.1.12).

Remark 3.1.18. We can also replace the operad Lie by any operad O such that

(i) O is classical, i.e. it lies in the heart of the t-structure of Vect.
(ii) O∨[−1] is also classical.
(iii) O(1) � Λ (as we already assume throughout this paper).

3.2. Higher enveloping algebras

We will briefly explain the topological analogue of the main results in the factoriz-
able setting, proved in the next subsection. In this setting, the result is an immediate 
consequence of what we already proved above.

The main reference of this part is [8].

3.2.1. Let

g ∈ Lie(Vect).

Then one can form its En-universal enveloping algebra

UEn
(g) ∈ En(Vect)

by applying the following sequence of functors
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Lie(Vect)
Ω×n[−n]

En(Lie(Vect))
En(Chev)

En(ComCoAlg(Vect))

oblvComCoAlg
En(Vect)

where En(Lie(Vect)) and En(ComCoAlg(Vect)) are categories of En-algebras with re-
spect to the Cartesian monoidal structure on Lie(Vect) and ComCoAlg(Vect) respec-
tively (note that the latter one is just the given by ⊗ in Vect).

3.2.2. It is proved in [8] that [−n] induces an equivalence

[−n] : Lie(Vect) � En(Lie(Vect)) : [n].

Moreover, we know from Theorem 3.1.1 that

En(Chev) : En(Lie(Vect≤−1)) → En(ComCoAlg(Vect≤−2)).

As a result, we get

Proposition 3.2.3. We have the following equivalence of categories

Lie(Vect≤−n−1) � En(ComCoAlg(Vect≤−2)). (3.2.4)

3.2.5. The equivalence (3.2.4) is precisely what we are looking for in the context of 
factorization algebras on the Ran space in the following subsection. One part of the 
work is to find connectivity assumptions on Shv(RanX) which mirror those appearing 
in Vect≤−n−1 and Vect≤−2 respectively.

3.3. The case of Lie�- and ComCoAlg�-algebras on RanX

We now come to the precise formulation and the proof of Theorem 1.5.3. Throughout 
this subsection, we will assume that X is smooth over k of dimension d.

Definition 3.3.1. Let Shv(RanX)≤ccA and Shv(RanX)≤cL denote the full subcategory 
of Shv(RanX) consisting of sheaves F such that for all non-empty finite sets I,

F| ◦
XI

∈ Shv(
◦
XI)≤(−1−d)|I|−1,

and respectively,

F| ◦
XI

∈ Shv(
◦
XI)≤(−1−d)|I|.

Here, we use the perverse t-structure, and X is a scheme of pure dimension d.
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Notation 3.3.2. We will use

Lie�(RanX)≤cL and ComCoAlg�(RanX)≤ccA

to denote

Lie�(Shv(RanX)≤cL) and ComCoAlg�(RanX)≤ccA

respectively.

With these connectivity assumptions in mind, the rest of this subsection will be de-
voted to the proof of the following

Theorem 3.3.3. Suppose X is smooth over k of dimension d. We have the following 
commutative diagram

Lie�(RanX)≤cL
Chev

Prim[−1]
ComCoAlg�(RanX)≤ccA

Lie�(X)≤cL
Chev

Prim[−1]
coFact�(X)≤ccA

(3.3.4)

where ≤ cL and ≤ ccA denote the connectivity constraints given in Definition 3.3.1, and 
where Chev and Prim[−1] are the functors coming from Koszul duality.

Remark 3.3.5. As in the case of Vect, we will in general suppress the distinction between 
a functor and its restriction to a subcategory cut out by some connectivity condition. 
For example, we will write Chev instead of Chev |Lie�(RanX)≤cL unless confusion is likely 
to occur.

Remark 3.3.6. As in Remark 3.1.2, it is straightforward to see that Chev restricts to 
the correct subcategories. For Prim[−1], it is a direct consequence of Lemma 3.3.17 and 
Corollary 3.3.18.

Remark 3.3.7. As in the case of Vect, the operad/co-operad pair Lie and ComCoAlg
could be replaced by a pair of Koszul dual operad/co-operad O and O∨ satisfying the 
conditions listed in Remark 3.1.18.9

We start with a preliminary lemma, which ensures that the categories

Lie�(RanX)≤cL and ComCoAlg�(RanX)≤ccA

9 Note that for a general operad O, only the first row of (3.3.4) makes sense.
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are actually well-defined.

Lemma 3.3.8. Suppose X is smooth over k of dimension d. Then the subcategories 
Shv(RanX)≤cL and Shv(RanX)≤ccA are preserved under the ⊗�-monoidal structure on 
Shv(RanX).

Proof. Recall from (2.4.4) that if

F1, . . . ,Fk ∈ Shv(RanX),

then from the definition of ⊗�, we have

(F1 ⊗� · · · ⊗� Fk)| ◦
XI

�
⊕

I=∪k
i=1Ii

Δ!
	k

i=1Ii�∪k
i=1Ii

(F1 � · · ·� Fk)| ◦
XI

. (3.3.9)

Now, suppose that

F1, . . . ,Fk ∈ Shv(RanX)≤cL ,

then we see that each summand in (3.3.9) lies in perverse cohomological degrees

≤ (−1 − d)
k∑

i=1
|Ii| + d

(
k∑

i=1
|Ii| − |I|

)

≤ −
k∑

i=1
|Ii| − d|I|

≤ (−1 − d)|I|.

Here, the first inequality is due to the fact that the map

◦
XI →

k∏
i=1

◦
XIi

is a regular embedding (since X is smooth), and that the (perverse) cohomological am-
plitude of the !-pullback along a regular embedding is equal to the codimension. The 
sequence of inequalities above thus implies that

F1 ⊗� · · · ⊗� Fk ∈ Shv(RanX)≤cL .

Similarly, suppose that

F1, . . . ,Fk ∈ Shv(RanX)≤ccA ,
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then each summand in (3.3.9) lies in perverse cohomological degrees

≤ (−1 − d)
k∑

i=1
|Ii| − k + d

(
k∑

i=1
|Ii| − |I|

)
(3.3.10)

≤ −
k∑

i=1
|Ii| − k − d|I|

≤ (−1 − d)|I| − 1.

Thus,

F1 ⊗� · · · ⊗� Fk ∈ Shv(RanX)≤ccA ,

which concludes the proof. �
3.3.11. Back to Theorem 3.3.3. First, we will prove the equivalence on the top row 
of (3.3.4). Then, we will show that it induces an equivalence between the corresponding 
sub-categories on the bottom row.

As in the case of Vect, to prove that Chev and Prim[−1] are mutually inverse functors, 
it suffices to show that Chev is fully-faithful, and Prim[−1] is conservative. As above, 
we start with the following lemma, whose proof, after some preparation, will conclude 
in §3.3.19.

Lemma 3.3.12. The functor Prim[−1]|ComCoAlg�(RanX)≤ccA satisfies the following condi-
tions (see Remark 3.3.5)

(i) Prim[−1] commutes with sifted colimits.
(ii) The natural map

FreeLie → Prim[−1] ◦ trivComCoAlg

is an equivalence.

As in Corollary 3.1.7, this immediately implies the following

Corollary 3.3.13. Chev |Lie�(RanX)≤cL is fully faithful.

3.3.14. In essence, the strategy we follow here is identical to that of the Vect case even 
though the actual execution might seem somewhat more involved. The main observation 
(which is new compared to the case of Vect) is that to prove the equivalences involved 

in Lemma 3.3.12, it suffices to prove them after pulling back to 
◦
XI for each non-empty 

finite set I.
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3.3.15. In general, for any

A ∈ ComCoAlg�(RanX)≤ccA ,

we have

coBarComCoAlg(A) = Tot(coBar•ComCoAlg(A)),

where coBar•ComCoAlg(A) is a co-simplicial object.
Let

coBarnComCoAlg(A) = Tot(coBar•ComCoAlg(A)|Δ≤n).

Then, we have the following tower

A � coBar0ComCoAlg(A) ← coBar1ComCoAlg(A) ← · · ·

and

coBarComCoAlg(A) � lim
n

coBarnComCoAlg(A).

3.3.16. Let

Fn(A) = Fib(coBarnComCoAlg(A) → coBarn−1
ComCoAlg(A)),

and I a non-empty finite set. Using the same argument as in the case of Vect in 
combination with the cohomological estimate (3.3.10), we see that Fn(A)| ◦

XI
lives in 

cohomological degrees

≤ (−1 − d)
2n∑
i=1

|Ii| − 2n + d

( 2n∑
i=1

|Ii| − |I|
)

+ n

= −
2n∑
i=1

|Ii| − 2n − d|I| + n

≤ −2n+1 − d|I| + n

which goes to −∞ when n → ∞.
This gives us the following analog of Lemma 3.1.10.

Lemma 3.3.17. Let

A ∈ ComCoAlg�(RanX)≤ccA .
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Then, for any n and I, the following natural map

tr≥−2n+1−d|I|+n+1(coBarnComCoAlg(A)| ◦
XI

) → tr≥−2n+1−d|I|+n+1(coBarn−1
ComCoAlg(A)| ◦

XI
)

is an equivalence.

This implies the following result, which is parallel to Corollary 3.1.11. See also Re-
mark 3.1.12, [11, Lemma 3.2.1] and the discussion after it where left-completeness and 
uniformly bounded cohomological amplitude for countable products are discussed.

Corollary 3.3.18. Let

A ∈ ComCoAlg�(RanX)≤ccA .

Then, for any n and I, the following natural map

tr≥−n(coBarComCoAlg(A)| ◦
XI

) → tr≥−n(coBarmComCoAlg(A)| ◦
XI

)

is an equivalence, when m � 0 depending only on n and I.

3.3.19. Concluding the proof of Lemma 3.3.12
As in the proof of Lemma 3.1.6, Lemma 3.3.12 is now a direct consequence of 

Lemma 3.3.17 and Corollary 3.3.18.

Remark 3.3.20. Note that when X is a point, namely when d = dimX = 0, the coho-
mological estimates in Lemma 3.3.17 recover those of Lemma 3.1.10.

To finish with the top equivalence in (3.3.4), we need the following

Lemma 3.3.21. The functor

Prim[−1] : ComCoAlg�(RanX)≤ccA → Lie�(RanX)≤cL

is conservative.

Proof. It suffices to show that

coBarComCoAlg : ComCoAlg�(RanX)≤ccA → Lie�[−1](RanX)≤ccA

is conservative, and we will do so by contradiction. Namely, let

f : A1 → A2

be a morphism in ComCoAlg�(RanX)≤ccA that is not an equivalence. Suppose that
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coBarComCoAlg(f) : coBarComCoAlg(A1) → coBarComCoAlg(A2)

is an equivalence, we will derive a contradiction.
Let I the set of smallest cardinality such that the map

f | ◦
XI

: A1| ◦
XI

→ A2| ◦
XI

is not an equivalence. Let k ≥ 0 be the smallest number such that

tr≥(−1−d)|I|−1−k(A1| ◦
XI

) → tr≥(−1−d)|I|−1−k(A2| ◦
XI

)

is not an equivalence.
By Corollary 3.3.18, we know that there exists some m � 0 such that

tr≥(−1−d)|I|−1−k(coBarComCoAlg(Ai)| ◦
XI

) � tr≥(−1−d)|I|−1−k(coBarmComCoAlg(Ai)| ◦
XI

)

for i ∈ {1, 2}. Thus, we get the following equivalence

tr≥(−1−d)|I|−1−k(coBarmComCoAlg(A1)| ◦
XI

) � tr≥(−1−d)|I|−1−k(coBarmComCoAlg(A2)| ◦
XI

).

But observe that if we let

Fn(Ai) = Fib(coBarnComCoAlg(Ai) → coBarn−1
ComCoAlg(Ai))

then the difference between Fn(A1)| ◦
XI

and Fn(A2)| ◦
XI

lies in cohomological degrees

≤ (−1 − d)|I| − 1 − k + (−1 − d)
2n−1∑
i=1

|Ii| − (2n − 1) + d

(
|I| +

2n−1∑
i=1

|Ii| − |I|
)

+ n

≤ (−1 − d)|I| − 1 − k −
2n−1∑
i=1

|Ii| − 2n + 1 + n

< (−1 − d)|I| − 1 − k.

This implies that for n ≥ 1,

tr≥(−1−d)|I|−1−k(Fn(A1)| ◦
XI

) � tr≥(−1−d)|I|−1−k(Fn(A2)| ◦
XI

).

Thus, as in the case of Vect, a downward induction implies that

tr≥(−1−d)|I|−1−k(A1| ◦
XI

) � tr≥(−1−d)|I|−1−k(A2| ◦
XI

),

which contradicts our original assumption, and we are done. �
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3.3.22. Corollary 3.3.13 and Lemma 3.3.21 together prove the equivalence on the top 
row of diagram (3.3.4). It remains to show the equivalence in the bottom row, for which 
it suffices to show that for any

g ∈ Lie�(RanX)≤cL ,

Chev(g) is factorizable if and only if g ∈ Lie�(X)≤cL .

3.3.23. For the “if” direction, recall that as a consequence of [3, Thm. 6.4.2 and 5.2.1], 
we know that the functor

Chev : Lie�(X) → ComCoAlg�(RanX)

lands inside the full-subcategory coFact�(X) of factorizable co-algebras. We thus get a 
functor

Chev : Lie�(X)≤cL → coFact�(X)≤ccA ,

which settles the “if” direction.

3.3.24. For the “only if” direction, let

g ∈ Lie�(RanX)≤cL

whose support does not lie in X. We will show that Chev g is not factorizable.
Using the ass-gr ◦ addFil trick (see §A), it suffices to prove for the case where g is a 

trivial (i.e. abelian) Lie algebra. In that case, we know that

Chev g = Sym>0(g[1]),

where Sym is taken using the ⊗�-monoidal structure.
Let I be the smallest set, with |I| > 1, such that g| ◦

XI
�� 0. Now, it’s easy to see 

that Sym>0(g[1]) fails the factorizability condition at 
◦
XI , which concludes the “only if” 

direction.

4. Factorizability of coChev

In this section, we will prove Theorem 1.5.5, which asserts that when g ∈ coLie�(X)
satisfies a certain co-connectivity constraint, the commutative algebra

coChev(g) ∈ ComAlg�(RanX)

is factorizable.
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Note that an analog of this result, where coChev is replaced by Chev, has been proved 
in [3] (and in fact, we used this result in the previous section). The main difficulties of the 
coChev case stem from the fact that, unlike Chev, coChev is defined as a limit, and most 
of the functors that we want it to interact with don’t generally commute with limits.

As above, our main strategy is to introduce a certain co-connectivity condition to 
ensure that when one takes the limit of a diagram involving objects satisfying it, the 
answer, in some sense, converges instead of running off to infinity, so we still have a good 
control over it.

We start with the precise statement of the theorem. Then, after a quick digression 
on the various notions related to the convergence of a limit, we will present the main 
strategy. Finally, the proof itself will be given.

4.1. The statement

We start with the co-connectivity conditions.

Definition 4.1.1. Let Shv(RanX)≥n denote the full subcategory of Shv(RanX) consisting 
of sheaves F such that for all non-empty finite sets I,

F| ◦
XI

∈ Shv(
◦
XI)≥n,

As before, we use the perverse t-structure.

Notation 4.1.2. We will use

coLie�(RanX)≥n and ComAlg�(RanX)≥n

to denote

coLie�(Shv(RanX)≥n) and ComAlg�(Shv(RanX)≥n)

respectively.

Our main goal is to prove the following

Theorem 4.1.3. Restricted to the full subcategory coLie�(X)≥1 of coLie�(RanX)≥1 con-
sisting of coLie-coalgebras whose underlying sheaves are supported on the diagonal X, the 
functor coChev factors through Fact�, i.e. we have the following commutative diagram

coLie�(X)≥1

coChev

coChev ComAlg�(RanX)

Fact�(X)
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In other words, coChev g is factorizable when g ∈ coLie�(X)≥1.

4.2. Stabilizing co-filtrations and decaying sequences (a digression)

We will now describe a condition on co-filtered and graded objects which make them 
behave nicely with respect to taking limits.

Definition 4.2.1. Let C be a stable infinity category equipped with a t-structure. Then, 
a co-filtered object c ∈ CcoFil>0 (see §B) is said to stabilize if for all n, the induced map

tr≤n cm → tr≤n cm+1

is an equivalence for all m � 0.
A graded object c ∈ Cgr>0 is said to be decaying if for all n, we have

tr≤n cm � 0

for all m � 0.

Notation 4.2.2. We use CcoFil>0,stab and Cgr>0,decay to denote the subcategories of CcoFil>0

and Cgr>0 consisting of stabilizing and decaying objects respectively.

We have the following lemmas, whose proofs are straightforward.

Lemma 4.2.3. Let c ∈ CcoFil>0 . Then c ∈ CcoFil>0,stab if and only if ass-gr c ∈ Cgr>0,decay.

Lemma 4.2.4. If c ∈ CcoFil>0,stab, then for each n, the natural map

τ≤noblvcoFilc → τ≤ncm

is an equivalence when m � 0.

Proof. By throwing away finitely many terms at the beginning, without loss of generality, 
we can assume that the natural maps

τ≤n+1ci → τ≤n+1cj , ∀i ≥ j > 0

are all equivalences. Now, it suffices to show that the following map is an equivalence

τ≤n lim
i

ci → τ≤nc1.

Equivalently, it suffices to show that

Fib(lim ci → c1) ∈ C≥n+1.

i
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However,

Fib(lim
i

ci → c1) � lim
i

(Fib(ci → c1)) ∈ C≥n+1

because

Fib(ci → c1) ∈ C≥n+1, ∀i.

Hence, we are done, since

i≥n+1 : C≥n+1 → C

commutes with limits (see §2.1.3). �
Lemma 4.2.5. The natural transformation⊕

→
∏

between functors

Cgr>0,decay → C

is an equivalence.

Proof. Note that ∏
i

ci � lim
k

⊕
i≤k

ci.

Moreover, since the sequence we are taking the limit over stabilizes, the result follows as 
a direct consequence of Lemma 4.2.4. �
4.2.6. The various definitions and observations above have straightforward analogues in 
the case of sheaves on the Ran space.

Definition 4.2.7. A co-filtered sheaf F ∈ Shv(RanX)coFil>0 is said to stabilize if for any 
non-empty finite set I,

F| ◦
XI

∈ Shv(
◦
XI)coFil>0,stab.

Similarly, a graded sheaf F ∈ Shv(RanX)gr>0 is said to be decaying if for any non-
empty finite set I,

F| ◦ ∈ Shv(
◦
XI)gr

>0,decay.

XI
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Notation 4.2.8. We use Shv(RanX)coFil>0,stab and Shv(RanX)gr>0,decay to denote the 
full-subcategories of Shv(RanX)coFil>0 and Shv(RanX)gr>0 consisting of stabilizing and 
decaying objects, respectively.

It’s straightforward to see that the following analogs of the lemmas above still hold 
in this setting.

Lemma 4.2.9. Let F ∈ Shv(RanX)coFil>0 . Then F ∈ Shv(RanX)coFil>0,stab if and only 
if ass-grF ∈ Shv(RanX)gr>0,decay.

Lemma 4.2.10. If F ∈ Shv(RanX)coFil>0,stab, then for each I and n, the natural map10

τ≤noblvcoFilF| ◦
XI

→ τ≤nFm| ◦
XI

is an equivalence when m � 0.

Lemma 4.2.11. The natural transformation⊕
→

∏
between functors

Shv(RanX)gr
>0,decay → Shv(RanX)

is an equivalence.

4.3. Strategy

To prove that Chev g is factorizable when g ∈ Lie�(X), [3] uses the addFil trick (see 
§A) to reduce to the case where g is a trivial. When g is trivial, we have

Chev g � Sym>0
g,

and the result can be seen directly.
In the case of coChev, while the core strategy remains the same, it is more com-

plicated to carry out since many commutative diagrams needed for the addFil trick to 
work (see (A.3.3)) don’t commute in general in this new setting. The co-connectivity 
constraints are what we need to make these diagrams commute and hence, to allow us 
to reduce to the trivial case.

10 Note that oblvcoFil commutes with restricting to 
◦
XI for any non-empty, finite set I. Thus, the LHS is 

free of ambiguity.
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4.3.1. Let us now sketch the strategy. Suppose for the moment that we have the following 
commutative diagram, which is analogous to (A.3.3), except for the extra conditions

coLie�(X)≥1

addCoFil

coChev ComAlg�(RanX)≥2

coLie�(X)≥1,coFil>0,stab coChevcoFil

ass-gr

ComAlg�(RanX)≥2,coFil>0,stab

ass-gr

oblvcoFil

coLie�(X)≥1,gr>0,decay
coChevgr

∏
ComAlg�(RanX)≥2,gr>0,decay

∏
coLie�(X)≥1 coChev ComAlg�(RanX)≥2

(4.3.2)

Suppose also that oblvcoFil preserves factorizability, and that ass-gr and 
∏

are conser-
vative with respect to factorizability.11 Then by the same reasoning as in the addFil
trick, to prove that coChev g is factorizable, it suffices to assume that g has a trivial 
coLie-structure. In that case,

coChev g � Sym>0(g[−1]),

and as in the Chev case, we are done.
In §4.4–§4.6, we will carry out the strategy outlined above and conclude the proof of 

Theorem 4.1.3.

4.4. Well-definedness of functors

Before proving that the diagram commutes, we need to first make sense of it. A priori, 
the functors written in the diagram are not necessarily well-defined. For instance, we have 
not shown that all the four instances of coChev land in the correct target categories. 
Moreover, we also do not know that oblvcoFil, ass-gr, and 

∏
preserve the algebra/co-

algebra structures.
The latter question is settled by the following observation, whose proof, which makes 

use of the stability and decaying conditions to commute limits and tensor products, is 
straight-forward.

Lemma 4.4.1. For any n, the functors

oblvcoFil : Shv(RanX)≥n,coFil>0,stab → Shv(RanX)≥n

11 Here, by conservativity, we mean that an object satisfies factorizability condition if its image under the 
functor does.
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ass-gr : Shv(RanX)≥n,coFil>0 → Shv(RanX)≥n,gr>0

∏
�

⊕
: Shv(RanX)≥n,gr>0,decay → Shv(RanX)≥n

are symmetric monoidal with respect to the ⊗�-monoidal structure on RanX. In par-
ticular, they automatically upgrade to functors between corresponding categories of alge-
bras/co-algebras.

4.4.2. We will now tackle the former question: namely, the various instances of the 
functor coChev appeared in (4.3.2) land in the correct target categories.

The top and bottom coChev are the same, and it’s easy to see that they land in the 
correct category using the fact that the shriek-pullback functor is left exact and C≥n is 
preserved under limits for any stable infinity category C with a t-structure (since i≥n

commutes with limits, see §2.1.3).
By the same token, we know that the essential images of coChevcoFil and coChevgr

satisfy the co-connectivity assumption (i.e. live in (perverse) cohomological degree ≥ 1). 
Thus, it remains to show that they also satisfy the stab and decay conditions respectively. 
For that, first observe that the assertion about ass-gr in Lemma 4.4.1, combined with 
the fact that ass-gr commutes with limits, gives us a weakened version of the middle 
square of (4.3.2).

Corollary 4.4.3. We have the following commutative diagram

coLie�(X)≥1,coFil>0,stab coChevcoFil

ass-gr

ComAlg�(RanX)≥2,coFil>0

ass-gr

coLie�(X)≥1,gr>0,decay
coChevgr

ComAlg�(RanX)≥2,gr>0

Now, by Lemma 4.2.9, to show that coChevcoFil and coChevgr satisfy the stab and 
decay conditions respectively, it suffices to show that coChevgr satisfies the decay condi-
tion. However, this is also a direct consequence of the fact that the shriek-pullback functor 
is left exact and C>n is preserved under limits (for any stable infinity category C with 
a t-structure). Altogether, we have thus proved that all functors in the diagram (4.3.2)
above land in the correct categories.

4.5. Commutative diagrams

We will now proceed to prove that the diagram (4.3.2) commutes. First note that we 
have just settled the commutativity of the middle diagram of (4.3.2) at the end of the 
previous subsection.
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4.5.1. The commutativity of the bottom diagram of (4.3.2) is clear if we know that 
∏

is symmetric monoidal. However, by Lemma 4.2.11, we have∏
�

⊕
and we know that 

⊕
is symmetric monoidal.

4.5.2. Finally, to show that the top diagram of (4.3.2) commutes, it suffices to show that 
the following diagram commutes

coLie�(X)≥1 coChev ComAlg�(RanX)≥2

coLie�(X)≥1,coFil>0,stab

oblvcoFil

coChevcoFil ComAlg�(RanX)≥2,coFil>0,stab

oblvcoFil

(4.5.3)

since the composition

coLie�(X)≥1 addCoFil−→ coLie�(X)≥1,coFil>0,stab oblvcoFil−→ coLie�(X)≥1

is the identity functor (see also §A.3.1). However, this is clear since the functor

oblvcoFil : Shv(RanX)≥n,coFil>0,stab → Shv(RanX)≥n

commutes with limits for any n, and moreover it is symmetric monoidal with respect to 
the ⊗�-monoidal structure on Shv(RanX) by Lemma 4.4.1.

4.6. Relation to factorizability

Using the fact that ass-gr is symmetric monoidal and is a conservative functor, it is 
easy to see that

ass-gr : ComAlg�(RanX)≥2,coFil>0,stab → ComAlg�(RanX)≥2,gr>0,decay

reflects factorizability, namely, an object is factorizable if its image is.
As we already discussed above, we have an equivalence of functors∏

�
⊕

: ComAlg�(RanX)≥2,gr>0,decay → ComAlg�(RanX)≥2.

But now it’s clear that 
∏

reflects factorizability, since 
⊕

does.
Finally, since

oblvcoFil : ComAlg�(RanX)≥2,coFil>0,stab → ComAlg�(RanX)≥2
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is compatible with � (for the same reason that it is compatible with ⊗�), and moreover 
(−)! commutes with limits (being a right adjoint), we see easily that oblvcoFil preserves 
factorizability. Thus, we conclude the proof of Theorem 4.1.3.

4.7. Relation to coLie!(X) and ComAlg!(X)

In this subsection, we will discuss the various links between objects defined on X such 
as coLie!(X) and ComAlg!(X) and objects defined on RanX such as coLie�(RanX), 
ComAlg�(RanX) and Fact�(X). This subsection is not used anywhere in the paper. We 
include it here for the sake of completeness.

4.7.1. Recall that on a scheme X, there are two symmetric monoidal structures, ⊗ and 
!
⊗. Thus, we could talk about various algebra/co-algebra objects defined on it

Lie∗(X), coLie!(X), ComAlg!(X),

where Lie∗(X) (not to be confused with Lie�(X)) is the category of Lie-algebra objects 
in Shv(X) with respect to the ⊗-monoidal structure, and coLie!(X) (resp. ComAlg!(X)) 
is the category of coLie-algebra (resp. commutative algebra) objects in Shv(X) with 

respect to the 
!
⊗-monoidal structure.

4.7.2. The following observations are straightforward, and are both based on the fact 
that the functors

ins∗X : Shv(RanX)⊗
� → Shv(X)⊗ and ins!X : Shv(RanX)⊗

� → Shv(X)
!
⊗

are symmetric monoidal, where

insX : X → RanX

is the diagonal embedding.

Lemma 4.7.3. We have a pair of adjoint functors

ins∗X : Lie�(RanX) � Lie∗(X) : insX∗

which induces an equivalence of categories

Lie�(X) � Lie∗(X),

where the LHS denotes the full-subcategory of Lie�(RanX) = Lie(Shv(RanX)⊗�) con-
sisting of Lie-algebras whose underlying sheaves are supported on the diagonal X of 
RanX.



Q.P. Ho / Advances in Mathematics 392 (2021) 107992 47
Lemma 4.7.4. We have a pair of adjoint functors

insX! : coLie!(X) � coLie�(RanX) : ins!X

which induces an equivalence of categories

coLie!(X) � coLie�(X),

where the RHS denotes the full-subcategory of coLie�(RanX) = coLie(Shv(RanX)⊗�)
consisting of coLie-coalgebras whose underlying sheaves are supported on the diagonal X
of RanX.

4.7.5. We also have the following functor

ins!X : ComAlg�(RanX) → ComAlg!(X)

which commutes with limits. Thus, we get a pair of adjoint functors

insX? : ComAlg!(X) � ComAlg�(RanX) : ins!X . (4.7.6)

We have the following result from [7, Thm. 5.6.4].

Theorem 4.7.7. The pair of adjoint functors in (4.7.6) induces an equivalence of cate-
gories

ComAlg!(X) � Fact�(X).

4.7.8. The first link between coLie!(X), coLie�(X), ComAlg!(X), ComAlg�(RanX) and 
Fact�(X) is given by the following

Proposition 4.7.9. The following diagram commutes

coLie!(X)

coChev

coLie�(X)

ins!X

coChev

ComAlg!(X) ComAlg�(RanX)
ins!X

(4.7.10)

Proof. The result is straightforward due to the fact that ins!X commutes with limits and 
that it’s monoidal. �
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4.7.11. The second link, and also the more interesting one, is given by the following

Proposition 4.7.12. We have the following commutative diagram

coLie!(X)≥1

coChev


insX! coLie�(X)≥1

coChev

ComAlg!(X)
insX? Fact�(X)

Proof. By adjunction, for any g ∈ coLie!(X), we have a natural map

insX? ◦ coChev → coChev ◦ insX!

between objects in ComAlg�(RanX). Now, we know from Theorem 4.7.7 that the LHS 
is factorizable. Moreover, when g ∈ coLie!(X)≥1, we know from Theorem 4.1.3 that the 
RHS is also factorizable. Thus, to show that the map above is an equivalence when 
g ∈ coLie!(X)≥1, it suffices to show that they are equivalent on the diagonal. However, 
that is clear from (4.7.10) and we are done. �
5. Interactions between various functors on the Ran space

In this section, we investigate how the various functors operating on sheaves on the 
Ran spaces interact with each other. The highlights are Theorem 5.1.2, which says that 
coChev is compatible with C∗

c (RanX, −) under some co-connectivity assumption, and 
Theorem 5.3.1 which shows how the functor of taking Koszul duality exchanges coChev
and Chev under some connectivity assumption.

5.1. C∗
c (RanX, −) and coChev

In this subsection, we will prove Theorem 1.5.7, which gives us a criterion for the 
commutativity of the functor coChev and the functor C∗

c (RanX, −). Note that it has 
been proved in [3] that Chev always commutes with C∗

c (RanX, −). The main reason is 
that C∗

c (RanX, −) is continuous and monoidal with respect to the ⊗�-monoidal structure 
on Shv(RanX) and the usual monoidal structure on Vect. As before, our main difficulty 
comes from the fact that coChev is defined as a limit, and for that to behave well with 
respect to C∗

c (RanX, −), we need to impose a certain co-connectivity assumption.

5.1.1. Throughout this subsection, X will be assumed to be a proper scheme of pure 
dimension d.

Theorem 5.1.2. For any g ∈ coLie�(X)≥d+1, the natural map

C∗
c (RanX, coChev g) → coChev(C∗

c (X, g))
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is an equivalence.12

After some preparation, the actual proof of the theorem will be carried out in §5.1.16. 
We start with the following elementary lemma whose proof is immediate.

Lemma 5.1.3. Let F : N ×Nop → C be a functor. Assume that there exists N ∈ N such 
that for all i, j > N , the following maps

F (i, j) → F (i + 1, j) and F (i, j) → F (i, j − 1)

are equivalences, i.e. F |N>N×Nop
>N

factors through the maximal sub-groupoid of C. Then

colim
i∈N

lim
j∈Nop

F (i, j) � lim
j∈Nop

colim
i∈N

F (i, j) � F (N,N),

assuming that all limits and colimits exist.

Corollary 5.1.4. Let C be a stable ∞-category equipped with a right-separated t-structure 
and assume also that filtered colimits are exact with respect to the t-structure. Let

F : N ×Nop → C

such that for any c, the functor tr<c ◦F satisfies the conditions of Lemma 5.1.3. Then

colim
i∈N

lim
j∈Nop

F (i, j) � lim
j∈Nop

colim
i∈N

F (i, j),

assuming that all limits and colimits make sense.

Proof. The separatedness condition implies that it suffices to prove that for each integer 
c, the following map is an equivalence

tr<c colim
i∈N

lim
j∈Nop

F (i, j) � tr<c lim
j∈Nop

colim
i∈N

F (i, j).

Commuting tr<c pass the colimit and limit, the equivalence is a direct consequence of 
Lemma 5.1.3 above. Note that here, we only use the exactness of filter colimits (tr<0

commutes with limits since it’s a right adjoint). �
We will apply the discussion above to the situation at hand.

12 Since Supp g ⊂ X ⊂ RanX, we have C∗
c (RanX, g)  C∗

c (X, g).
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5.1.5. Truncated Ran space
For any scheme X and any positive integer n, we define

Ran≤n X � colim
I∈fSetsurj

|I|≤n

XI .

Then

RanX � colim Ran≤n X � colim(X → Ran≤2 X → Ran≤3 X → · · · ),

and hence, for any F ∈ Shv(RanX),

C∗
c (RanX,F) � colim

n
C∗

c (Ran≤n X,F|Ran≤n X).

The following observation, which gives the link among the cohomology groups

C∗
c (Ran≤n X,F|Ran≤n X)

for various n’s, comes from [5, Cor. 9.1.4].

Lemma 5.1.6. We have the following natural equivalence

C∗(
◦
XI ,F| ◦

XI
)ΣI

� coFib(C∗
c (Ran≤|I|−1 X,F|Ran≤|I|−1 X) → C∗

c (Ran≤|I| X,F|Ran≤|I| X)).

5.1.7. coChev as a sequential limit
When

g ∈ coLie�(X)≥d+1,

using the addCoFil trick (4.3.2), we can also express coChev g as a sequential limit

coChev g � oblvcoFil coChevcoFil addCoFil g � lim
i

(coChevcoFil addCoFil g)i.

Where (coChevcoFil addCoFil g)i is the i-th step in the co-filtration, and moreover

Fib((coChevcoFil addCoFil g)i → (coChevcoFil addCoFil g)i−1) � Symi(g[−1]),

where Sym is formed using the ⊗�-monoidal structure on Shv(RanX).

5.1.8. For brevity’s sake, we will denote

coChevi
g = (coChevcoFil addCoFil g)i

and so we have
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coChev g � lim
i

coChevi
g

and

Fib(coChevi
g → coChevi−1

g) � Symi(g[−1]), (5.1.9)

where Sym is formed using the ⊗�-monoidal structure on Shv(RanX).

5.1.10. For g ∈ coLie�(X)≥d+1, consider the following functor

F : N ×Nop → Vect (5.1.11)

(i, j) �→ C∗
c (Ran≤i X, coChevj

g) � coChevj C∗
c (X, g)

where the equivalence on the second line is due to the fact that coChevj is computed as 
a finite limit for each j.

The goal now is to show that F satisfies the conditions stated in Corollary 5.1.4. We 
start with a couple of cohomological estimates.

Lemma 5.1.12. For any g ∈ coLie�(X)≥d+1 and any non-negative integer i,

Supp coChevi
g ⊂ Ran≤i X

and for all non-empty finite set I such that |I| ≤ i, (Symi(g[−1]))| ◦
XI

lives in perverse 
cohomological degrees ≥ i(d + 2).

Proof. This follows directly from (2.4.4) and the fact that !-pullbacks are left exact with 
respect to the perverse t-structure. �
Corollary 5.1.13. For any g ∈ coLie�(X)≥d+1, any non-empty finite set I, and any pos-
itive integer j, (coChevj

g)| ◦
XI

lives in perverse cohomological degrees ≥ |I|(d + 2). In 
particular,

C∗(
◦
XI , (coChevj

g)| ◦
XI

)ΣI

lives in cohomological degrees ≥ 2|I|.

Proof. Since C∗(
◦
XI , −)[−d|I|] is t-left exact, the second statement follows from the first. 

Now, when j < |I|, then there is nothing to prove since everything vanishes. For j ≥ |I|, 
we have the following sequence of sheaves

coChevj
g| ◦

XI
→ coChevj−1

g| ◦
XI

→ · · · → coChev|I|
g| ◦

XI
→ coChev|I|−1

g| ◦
XI

� 0.

Inducting on k ∈ {|I|, . . . , j}, using the fact that the k-th fiber of this sequence is 
Symk(g[−1])| ◦ (see (5.1.9)) and the estimates in Lemma 5.1.12 concludes the proof. �
XI
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Lemma 5.1.14. For any g ∈ coLie�(X)≥d+1 and any pair of positive integers i, j,

C∗
c (Ran≤i X, Symj(g[−1])|Ran≤i X)

lives in cohomological degrees ≥ 2j.

Proof. Consider the following sequence of chain complexes

C∗
c (X, Symj(g[−1])|X) → C∗

c (Ran≤2 X, Symj(g[−1])|Ran≤2 X) → . . .

→ C∗
c (Ran≤i X, Symj(g[−1])|Ran≤i X),

with the k-th co-fiber being

C∗(
◦
Xk,Symj(g[−1])| ◦

Xk
)Σk

, k ∈ {1, . . . , i}

by Lemma 5.1.6.13 By Lemma 5.1.12, we see that this chain complex lives in cohomo-
logical degrees ≥ j(d + 2) − kd when k ≤ j and vanishes otherwise. Thus, in particular, 
it lives in cohomological degrees ≥ 2j. Inducting on k ∈ {1, . . . , i}, we conclude the 
proof. �
Proposition 5.1.15. When g ∈ coLie�(X)≥d+1, the functor F considered at (5.1.11) satis-
fies the conditions stated in Corollary 5.1.4. In particular, we have a natural equivalence

colim
i

lim
j

C∗
c (Ran≤i X, coChevj

g|Ran≤i X) � lim
j

colim
i

C∗
c (Ran≤i X, coChevj

g|Ran≤i X).

Proof. This is a direct consequence of Corollary 5.1.13 and Lemma 5.1.14. �
5.1.16. With these observations, we are ready for the proof of Theorem 5.1.2.

Proof of Theorem 5.1.2. We have

C∗
c (RanX, coChev g)

� colim
i

C∗
c (Ran≤i X, lim

i
coChevj

g|Ran≤i X)

� colim
i

lim
j

C∗
c (Ran≤i X, coChevj

g|Ran≤i X) (5.1.17)

� lim
j

colim
i

C∗
c (Ran≤i X, coChevj

g|Ran≤i X) (5.1.18)

� lim
j

C∗
c (RanX, coChevj

g)

13 Since X is assumed to be proper throughout this subsection, our statement is valid also for the case 
k = 1.
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� lim
j

coChevj C∗
c (X, g) (5.1.19)

� coChevC∗
c (X, g). (5.1.20)

Here, (5.1.17) is due to the fact that C∗
c (Ran≤i X, −) is a finite colimit of functors 

of the form C∗
c (XI , −), each of which commutes with limits since X is proper. More-

over, (5.1.18) is due to Proposition 5.1.15 and (5.1.19) is due to the fact that coChevj

is a finite limit and g is supported only on X. Finally, (5.1.20) is obtained by applying 
the addCoFil trick to the case of Vect. �
Remark 5.1.21. In the last step (5.1.20), we need g to live in perverse cohomological 
degrees ≥ d + 1 so that C∗

c (X, g) � C∗(X, g) lives in cohomological degrees ≥ 1, which 
is needed to apply the addCoFil trick. Here, X = pt in (4.3.2).

5.2. Verdier duality

Before studying the link between Chev and coChev, we start with a quick recollection 
of Verdier duality on prestacks along with various useful properties. The main reference 
is [5]. We only use the very basic properties of DRan.

5.2.1. Let Y be a prestack such that the diagonal map

diagY : Y → Y× Y

is pseudo-proper. For F, G ∈ Shv(Y), by a pairing between them, we shall mean a map

F � G → diagY! ωY.

We define the Verdier dual DYG of G to be the object representing the functor

F �→ Hom(F � G,diagY! ωY).

Namely, we have the following natural equivalence

Hom(F, DYG) � Hom(F � G,diagY! ωY).

The following lemma is immediate from the definition.

Lemma 5.2.2. Let F ∈ Shv(Y), such that

F � colim
i∈I

Fi.

Then

DYF � lim DYFi.

i∈Iop
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5.2.3. We will now study the link between Verdier duality and �.

Proposition 5.2.4. Let Y1 and Y2 be finitary pseudo-schemes, and Fi ∈ Shv(Yi) for i ∈
{1, 2}. Then, we have a natural equivalence

DY1F1 �DY2F2 � DY1×Y2(F1 � F2).

Proof. First, note that the result holds when both Y1 and Y2 are schemes.
For the general case of finitary pseudo-schemes, we write

Y1 � colim
i

Y1i and Y2 � colim
j

Y2j .

Then,

F1 � colim
i

ins1i! ins!1i F1 and F2 � colim
j

ins2j! ins!2j F2.

Thus,

DY1×Y2(F1 � F2) � DY1×Y2 colim
i,j

(ins1i × ins2j)!(ins1i × ins2j)!(F1 � F2)

� lim
i,j

(ins1i × ins2j)!DY1i×Y2j (ins!1i F1 � ins!2j F2) (5.2.5)

� lim
i,j

(ins1i × ins2j)!(DY1i ins!1i F1 �DY2j ins!2j F2) (5.2.6)

� (lim
i

ins1i! DY1i ins!1i F1) � (lim
j

ins2j! DY2j ins!1j F2) (5.2.7)

� (DY1 colim
i

ins1i! ins!1i F1) � (DY2 ins2j! ins!2j F2) (5.2.8)

� DY1F1 �DY2F2.

Here, (5.2.6) is due to the fact that the statement we are trying to prove holds for the 
case of schemes, (5.2.7) is due to the fact that the limits we are taking are all finite (due 
to the finitary assumption), and finally, both (5.2.5) and (5.2.8) are due to Lemma 5.2.2
and Proposition 5.2.9 below. �
Proposition 5.2.9. Let f : Y1 → Y2 be a finitary pseudo-proper map between pseudo-
schemes, each having a finitary diagonal. Then, the natural transformation

f! ◦DY1 → DY2 ◦ f!

is an equivalence.

Proof. See [5, Cor. 7.5.6]. �
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Remark 5.2.10. One direct corollary of this proposition is the fact that for any sheaf 
F ∈ Shv(X), we have the following natural equivalence

δX!DXF � DRanXδX!F.

Corollary 5.2.11. Let F1, F2, · · · , Fk ∈ Shv(RanX) with finite supports, i.e. there exists 
an n such that all the Fi’s are !-pushforward of sheaves on Ran≤n X. Then, we have the 
following natural equivalence

DRanX(F1 ⊗� F2 ⊗ · · · ⊗� Fk) � (DRanXF1) ⊗� (DRanXF2) ⊗� · · · ⊗� (DRanXFk).

Proof. Since the sheaves involved have finite supports, their box-tensor commutes with 
Verdier duality on Ran≤n X, by Proposition 5.2.4. Since Ran≤n X → RanX is fini-
tary pseudo-proper, Proposition 5.2.9 implies that their box-tensor also commutes with 
Verdier duality on RanX. Finally, using the fact that the union map is finitary pseudo-
proper, Proposition 5.2.4 then implies that ⊗� of these sheaves also commutes with 
Verdier duality on the Ran space. �
5.3. Chev, coChev, and DRanX

We will now turn to Theorem 1.5.9, which provides a link between the two functors 
Chev and coChev via the functor of taking Verdier duality on the Ran space.

Theorem 5.3.1. Let g ∈ Lie�(X)≤−1. Then we have a natural equivalence

coChev(DXg) � DRanX Chev(g),

of objects in ComAlg�(RanX), where DRanX is the functor of taking Verdier duality on 
RanX.

Note that this is the only place we use Verdier duality on the Ran space. However, 
we essentially use it in a rather minimal way: not much besides the definition itself.

Proof. We will employ ideas originated from the addFil and addCoFil tricks (see also 
§A). First, observe that for any g ∈ Lie�(X), we have a canonical equivalence

addCoFilDRanXg � DRanX addFil g.

We use Chevi
g and coChevi DRanXg to denote the i-th piece in the filtration/co-

filtration of Chev(addFil g) and coChev(addCoFilDRanXg) respectively.
From §A and the top part of the commutative diagram (4.3.2), we have the following 

natural equivalences
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Chev g � colim
i

Chevi
g,

coChev(DRanXg) � lim
i

coChevi(DRanXg).

At the same time, by Lemma 5.2.2, we know that

DRanX colim
i

Chevi
g � lim

i
DRanX Chevi

g.

Thus, it suffices to show that

DRanX Chevi
g � coChevi DRanXg.

Now, it’s an immediate consequence of Corollary 5.2.11. �
Corollary 5.3.2. Let g ∈ Lie�(X)≤−1. Then DRanX Chev(g) is a factorizable commutative 
algebra on RanX.

Proof. This is a direct consequence of Theorem 5.3.1 and Theorem 4.1.3. �
5.4. coChev and open embeddings

We end the section with the following simple observation.

Proposition 5.4.1. Let

j : X ′ → X

be an open embedding of schemes, which induces an open embedding of prestacks

jRan : RanX ′ → RanX.

Then for any g′ ∈ coLie�(X ′), we have the following natural equivalence

(jRan)∗ coChev(g′) � coChev(j∗g′).

Proof (Sketch). The result is a direct consequence of the fact that (jRan)∗ is symmetric 
monoidal and commutes with limits. The latter is due to the fact that it is a right adjoint. 
The former is due to the fact that for any open embeddings of prestacks fi : X ′

i → Xi

and any Fi ∈ Shv(X ′
i) for i = 1, 2, we have a natural equivalence

(f1 × f2)∗(F1 � F2) � f1∗F1 � f2∗F2.

This is in turn a consequence of (2.3.16) and the corresponding fact for schemes. �
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6. An application to the Atiyah-Bott formula

We will now give an application of the results proved so far to the Atiyah-Bott formula. 
As mentioned in the introduction, these results allow us to simplify the second of the 
two main steps in the original proofs given in [7] and [5]. In what follows, §6.1–§6.4 are 
intended to orient the readers with the existing results proved in [7] and [5],14 whereas 
the purpose of the last part, §6.5, is to explain how the results we’ve proved so far fit in 
with the rest.

6.1. The statement

From now on, X is a smooth and complete curve over an algebraically closed field k, 
and G a smooth, fiber-wise connected group-scheme over X, whose generic fiber is semi-
simple simply connected. Due to [7, Lem. 7.1.1 and Prop A.3.11], we can (and from now 
on we will) assume that G is semi-simple simply connected over an open dense subset

j : X ′ ↪→ X,

and moreover, the fibers of G over any point in X −X ′ are homologically trivial.
We will also use

jRan : RanX ′ → RanX

to denote the corresponding open embedding on the Ran space and

ΓjRan : RanX ′ → RanX ′ × RanX

to denote its graph.

6.1.1. Let G0 be the split form of G. Then it is well-known that

C∗(BG0) � SymM0 (6.1.2)

is a free commutative algebra, for some M0 ∈ Vect. In the case of �-adic sheaves in positive 
characteristic setting, this equivalence is compatible with the geometric Frobenius action, 
where

M0 �
⊕
e

Λ[−2e](−e),

14 Namely, all the results stated in these subsections could be found in [7] or [5]. The readers should be 
warned that we provide a mere overview of the development given in these two papers, with many technical 
points elided.



58 Q.P. Ho / Advances in Mathematics 392 (2021) 107992
and e’s are the exponents of G0.
The assignment G0 �→ M0 is functorial with respect to automorphisms of G0, and 

hence, for a general G (subject to the assumptions mentioned above), we get a local 
system

M ∈ Shv(X ′),

whose !-fiber at each geometric point x ∈ X is equivalent to M0.
Below is the statement of the Atiyah-Bott formula.

Theorem 6.1.3. Let G, X as above. Then

(a) We have an equivalence

C∗(BunG) � Sym(C∗(X ′,M)).

(b) When k = Fq, and X and G are defined over Fq, the above equivalence can be chosen 
to be compatible with the Frobenius actions.

6.2. BG and the sheaf B

6.2.1. The sheaf B that we will now describe encodes the reduced cohomology of BG, 
the relative (over X) classifying stack of G. For each I ∈ RanX(S), let DI ⊂ S ×X be 
the corresponding Cartier divisor. Let BGI denote the Artin stack classifying G-bundles 
over DI and fI : BGI → S the forgetful map. Then, we define

B̃S,I = DS(Fib(fI!f !
IΛS → ΛS)),

where DS is the functor of taking Verdier duality on S. These sheaves, assembled to-
gether, give rise to a sheaf (see also [7, Prop. 5.4.3])

B̃ ∈ Shv(RanX).

6.2.2. Note that for any finite set of points {x1, . . . , xn} ∈ (RanX)(k), the !-fiber of B̃
at this point is

coFib
(

Λ →
n⊗

i=1
C∗(BGxi

)
)
. (6.2.3)

6.2.4. Using a variant of the diagonal map

BG → BG×BG,
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we can equip B̃ with the structure of an object in

ComAlg�(RanX).

However, we see easily from (6.2.3) that B̃ is not factorizable. The functor TakeOut
developed in [5] allows us to remove all the extra components in it and construct out of it 
a new object B ∈ Fact�(X) with the correct !-fibers at a point {x1, . . . , xn} ∈ (RanX)(k)

n⊗
i=1

C∗
red(BGxi

).

Moreover, B has the same cohomology along RanX as the original sheaf B̃ (see also [5, 
Cor. 5.3.5])

C∗
c (RanX,B) � C∗

c (RanX, B̃).

6.2.5. B and BunG

For every S ∈ Sch and I ∈ (RanX)(S), we have a map of prestacks over S by 
restricting the bundle to the divisor DI

S × BunG → BGI . (6.2.6)

This induces a map

B̃S,I → ωS ⊗ C∗
red(BunG)

and hence, also a map

B̃ → ωRanX ⊗ C∗
red(BunG).

Applying the functor C∗
c (RanX, −) and using the fact that RanX is homologically 

contractible, we get a map

C∗
c (RanX,B) � C∗

c (RanX, B̃) → C∗
red(BunG). (6.2.7)

6.2.8. Using (6.1.2) and the assumption we have on G, i.e. it has homologically con-
tractible fibers outside of X ′, one gets an equivalence

B � (jRanX)∗B′ � Sym>0(j∗M) (6.2.9)

where B′ is the restriction of B to RanX ′ and, the symmetric algebra is taken inside 
Shv(RanX) using the ⊗�-monoidal structure.
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6.2.10. Using the equivalence (6.2.9) and the fact that C∗
c (RanX, −) commutes with 

Sym,15 we get an explicit presentation of the LHS of (6.2.7)

C∗
c (RanX,B) � Sym>0 C∗

c (X, j∗M) � Sym>0 C∗(X ′,M), (6.2.11)

which appears in the statement of the Atiyah-Bott formula as stated in Theorem 6.1.3.

6.2.12. Now, we are done if we could show that the map in (6.2.7) is an equivalence.

6.3. Affine Grassmannian and the sheaf A

Unfortunately, one does not know how to directly prove that (6.2.7) is an equivalence. 
Instead, [7] proceeds with an equivalence of a dual nature, which we will now briefly 
recall.

6.3.1. The main player in this step is the affine Grassmannian, or more precisely, a fac-
torizable version thereof. Let G and X be as above. The factorizable affine Grassmannian 
of G, denoted by GrRanX′ , is the prestack whose S-points are given by

GrRanX′(S) = {(P, I, α)},

where

(i) P is a G-bundle over S ×X,
(ii) I is a non-empty finite subset of X ′(S),
(iii) α is a trivialization of P on the complement of the graph of I.

6.3.2. From the definition, we have the following natural morphism

g : GrRanX′ → RanX ′,

where we remember only the set I, and similarly another natural morphism

u : GrRanX′ → BunG,

where we remember only the bundle P.

6.3.3. The map g allows us to define

Ã′ � Fib(g!(ωGrRan X′ ) → ωRanX′) ∈ Shv(RanX ′),

15 Note that this is a special case of the fact that C∗
c (RanX, −) commutes with Chev. And in fact, both 

are due to the same reasons: that C∗
c (RanX, −) is continuous and that it’s symmetric monoidal.
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and the map u induces a map at the homology level, namely

Cred
∗ (GrRanX′) → Cred

∗ (BunG). (6.3.4)

Together, we get the following map

C∗
c (RanX ′, Ã′) → Cred

∗ (BunG). (6.3.5)

6.3.6. Note that since

GrRanX′ → RanX ′

is pseudo-proper, Ã′ is easy to describe. Namely for any finite set of points {x1, x2, . . . , xn}
⊂ X(k), the !-fiber of Ã′ at this point is

Fib
(

n⊗
i=1

C∗(GrGxi
) → Λ

)
. (6.3.7)

6.3.8. Using a variant of the diagonal map

Gr → Gr×Gr,

one can equip Ã′ with the structure of an object in

ComCoAlg�(RanX ′).

However, note that the sheaf Ã′ is not factorizable, since its !-fiber, as described 
in (6.3.7), is too big, i.e. it’s not equivalent to

n⊗
i=1

Cred
∗ (GrGxi

). (6.3.9)

Using a similar reasoning as in the case of B̃ and B, we can construct an object A′ ∈
coFact�(X ′) with the correct !-fiber as given in (6.3.9), and moreover, A′ has the property 
that

C∗
c (RanX ′, Ã′) � C∗

c (RanX ′,A′). (6.3.10)

6.3.11. A and BunG

The equivalence of a dual nature that we alluded to earlier is given by the following 
important result (see [7, Thm. 3.2.13]).

Theorem 6.3.12. The map (6.3.4), and hence (6.3.5), is an equivalence.
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This theorem is essentially a result about the homological contractibility of the space 
of rational map (maps that are defined only on an open subset) from X to G. An earlier 
version of this was proved in [4]. Together with (6.3.10) we have the following

Proposition 6.3.13. We have a natural equivalence

C∗
c (RanX ′,A′) � Cred

∗ (BunG).

6.4. Pairing

We will now describe how the equivalence given by Proposition 6.3.13 helps us show 
that (6.2.7) is an equivalence.

6.4.1. For any schemes S, S′ ∈ Sch and any non-empty finite subsets I ⊂ X(S) and 
I ′ ⊂ X ′(S′), we have a natural map (which is just a more elaborate variant of (6.2.6))

GrI′ ×S → BunG ×S′ × S → S′ ×BGI ,

which induces a map

A′ �B → ωRanX′×RanX ,

and hence, a pairing (using TakeOut)

A′ �B → ΓjRan!ωRanX′ .

6.4.2. Restricting this map to RanX ′ × RanX ′ gives us the following map

A′ �B′ → (δRanX′)!ωRanX′ ,

and hence, using the definition of Verdier duality, a map

B′ → DRanX′A′ (6.4.3)

between objects in ComAlg�(RanX ′).

6.4.4. It is proved, in fact twice (using different methods), in §17 and §18 of [5], that the 
restriction of (6.4.3) to the diagonal X ′ of RanX ′ is an equivalence. Namely, we have

B′|X′ � (DRanX′A′)|X′ . (6.4.5)
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6.5. The last steps

The results that we have just proved in this paper appear in two places in the con-
cluding steps, which are given by Proposition 6.5.1 and 6.5.4. Together, they imply the 
Atiyah-Bott formula.

Proposition 6.5.1. DRanX′A′ is factorizable, i.e.

DRanX′A′ ∈ Fact�(X ′) ⊂ ComAlg�(RanX ′).

Proof. It is well-known that for a split semi-simple simply connected group G0, 
Cred

∗ (GrG0 , Λ) lives in cohomological degrees ≤ −2. Using the fact that

GrRanX′ → RanX ′

is pseudo-proper and that A′ is factorizable, we see that for each non-empty finite set I, 
A′| ◦

X′I
lives in (perverse) cohomological degrees ≤ −3|I|.

Now, by Theorem 3.3.3, we know that there exists an object

a′ ∈ Lie�(X ′)≤cL

such that

A′ � Chev(a′).

Theorem 5.3.1 then implies that

DRanX′ Chev(a′) � coChev(DX′a′),

which is known to be factorizable by Theorem 4.1.3. �
Corollary 6.5.2. The map given in (6.4.3) is an equivalence, i.e.

B′ � DRanX′A′, (6.5.3)

and hence

B � (jRan)∗ coChevDX′a′ � coChev j∗DX′a′.

Proof. The first statement is a direct consequence of the proposition above and the 
equivalence (6.4.5), where as the second statement is the result of Proposition 5.4.1. �
Proposition 6.5.4. We have the following equivalence induced by Proposition 6.5.1

C∗
c (RanX,B) � C∗

c (RanX ′,A′)∨.
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Proof. We have the following equivalences

C∗
c (RanX,B) � C∗

c (RanX, coChev j∗DX′a′) (6.5.5)

� coChevC∗
c (X, j∗DX′a′) (6.5.6)

� coChevC∗(X,DX′a′)

� coChev(C∗
c (X, a′)∨)

� (Chev(C∗
c (X ′, a′)))∨ (6.5.7)

� C∗
c (RanX ′,Chev a′)∨

� C∗
c (RanX ′,A′)∨.

Here, (6.5.5), (6.5.6) and (6.5.7) are due to Corollary 6.5.2, Theorem 5.1.2 and Theo-
rem 5.3.1 (applied to a point) respectively. �
6.5.8. Finally, as a corollary, we have the Atiyah-Bott formula. Indeed, we have

Cred
∗ (BunG)∨ � C∗

c (RanX ′,A′)∨ � C∗
c (RanX,B) � Sym>0 C∗(X ′,M)

where the first, second and third equivalences are due to Proposition 6.3.13, Proposi-
tion 6.5.4, and (6.2.11) respectively.
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Appendix A. The addFil trick

In this appendix, we will quickly recall, without proof, a useful construction taken 
from [8, §IV.2], which allows us to reduce many statements about P-algebras to trivial P-
algebras, where P is an operad in Vect. Throughout this subsection, all categories without 
any further description will be assumed to be presentable, symmetric monoidal stable 
infinity over a field k of characteristic 0. Moreover, functors between these categories are 
assumed to be continuous.

All such categories, along with continuous functors between them, form a category, 
which we will use
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DGCatSymMon
pres,cont,

to denote, or for simplicity

DGCatSymMon.

A.1. Notations

For a symmetric monoidal category C, we denote the category of filtered objects in C

CFil = Fun(Z,C),

the category of functors from Z to C. Here, Z is a ordered set, viewed as a category. 
Similarly, we denote the category of graded objects

Cgr = Fun(Zset,C),

where Zset is a the discrete category, whose underlying underlying objects are the inte-
gers.16

A.2. Functors

Now, we will recall several familiar functors between C, CFil, and Cgr.

A.2.1. Let

V = · · · → Vn−1 → Vn → Vn+1 → · · · ,

be an object in CFil. Then, we define

ass-gr : CFil → Cgr

to be the functor of taking the associated graded object

ass-gr(V )n = coFib(Vn−1 → Vn),

and

oblvFil : CFil → C

to be the left Kan extension along

16 In [8], it’s called ZSpc.
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Z → pt.

Namely

oblvFil(V ) = colim
n∈Z

Vn.

A.2.2. We also use

(gr → Fil) : Cgr → CFil

and ⊕
: Cgr → C

to denote the functor obtained by taking the left Kan extension along

Zset → Z,

and

Zset → pt

respectively.

A.2.3. Note that the categories CFil and Cgr are equipped with a natural symmetric 
monoidal structure coming from C, and moreover, the functors ass-gr, oblvFil, gr → Fil, 
and 

⊕
are naturally symmetric monoidal.

A.2.4. Adding a filtration
Let

addFil : C → CFil

be the functor defined as follows: for an object V in C,

addFil(V )n =
{
V, when n ≥ 1,
0, otherwise.

It’s easy to see that⊕
◦ ass-gr ◦ addFil � oblvFil ◦ addFil � idC.
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A.3. Interactions with algebras over an operad

Let P be an operad in Vect. Then we have the following pair of functors

addFil : P -alg(C) → P -alg(CFil>0
) and oblvFil : P -alg(CFil>0

) → P -alg(C).

A.3.1. Let

F : DGCatSymMon → Cat∞

be a functor, where Cat∞ is the ∞-category of all ∞-categories. Suppose we have a 
continuous natural transformation

Φ : P -alg(−) → F (−),

i.e. morphisms between two objects in

Fun(DGCatSymMon,Cat∞).

Then from what we’ve discussed above, we have the following commutative diagram

P -alg(C) Φ
F (C)

P -alg(CFil)

oblvFil

Φ
F (CFil)

oblvFil

which, combined with the fact that

oblvFil ◦ addFil � idC,

implies that the following diagram also commutes

P -alg(C)

addFil

Φ
F (C)

P -alg(CFil) Φ
F (CFil)

oblvFil

A.3.2. Further composing the diagram above with ass-gr and 
⊕

gives us the following 
commutative diagram
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P -alg(C) Φ

addFil

F (C)

P -alg(CFil>0)

ass-gr

ΦFil

F (CFil>0)

oblvFil

ass-gr

P -alg(Cgr>0)
⊕

Φgr

F (Cgr>0)
⊕

P -alg(C) Φ
F (C)

(A.3.3)

We will refer to this as the fundamental commutative diagram of the addFil trick.

A.3.4. Now, suppose there are two natural transformations

Φ1,Φ2 : P -alg(−) → F (−)

equipped with a morphism between them

α : Φ1 → Φ2.

Or more concretely, we have a compatible family of morphisms in F (C)

Φ1(c) → Φ2(c)

parametrized by pairs (C, c) where c ∈ C and C ∈ DGCatSymMon, and we want to prove 
that α is an equivalence.

A.3.5. The top square of the commutative diagram above implies that it suffices to show 
that

ΦFil
1 ◦ addFil → ΦFil

2 ◦ addFil

is an equivalence. But since ass-gr and 
⊕

are conservative, it suffices to show that⊕
◦ ass-gr ◦ΦFil

1 ◦ addFil →
⊕

◦ ass-gr ◦ΦFil
2 ◦ addFil

is an equivalence, which, due to the commutativity of the diagrams, is equivalent to

Φ1 ◦
⊕

◦ ass-gr ◦ addFil → Φ2 ◦
⊕

◦ ass-gr ◦ addFil

being an equivalence.
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A.3.6. The crucial observation of [8, Prop. IV.2.1.4.6] is the following

Proposition A.3.7. The functor

⊕
◦ ass-gr ◦ addFil : P -alg(C) → F (C)

is canonically equivalent to trivP ◦oblvP, i.e.

P -alg(C) oblvP−→ C
trivP−→ P -alg(C).

A.3.8. This implies that it suffices to prove that

Φ1(c) → Φ2(c)

is an equivalence only for the case where c is a trivial algebra.

A.4. A general principle

More generally, suppose we want to prove a property of Φ(c) for some c ∈ P -alg(C). 
Moreover, suppose this property is preserved under oblvFil, and is conservative under 

⊕
and ass-gr. Then, it suffices to prove the case where c has a trivial algebra structure.

Appendix B. Co-filtration and addCoFil

In this appendix, we will collect various notions that are dual to the one in §A. These 
are used in the body of the paper to give a proof of the addCoFil trick in a special case.

B.1. Notations

For a symmetric monoidal category C, we denote the category of co-filtered objects

CcoFil = Fun(Zop,C).

We will also use CcoFil>0 to denote the full-subcategory of CcoFil consisting of objects 
supported in positive degrees. Similarly for graded objects Cgr and Cgr>0 .

B.2. Functors

As in the case of filtration, there are several familiar functors between C, CcoFil, and 
Cgr.
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B.2.1. Let

V = · · · → Vn+1 → Vn → Vn−1 → · · · ,

be an object in CcoFil. Then we define

ass-gr : CcoFil → Cgr

to be the functor of taking the associated graded object

ass-gr(V )n = Fib(Vn → Vn−1),

and

oblvcoFil : CcoFil → C

to be the right Kan extension along

Zop → pt.

Namely

oblvcoFil(V ) = lim
n∈Zop

Vn.

B.2.2. Note that the category CcoFil naturally inherits the monoidal structure coming 
from C. Moreover, the functor ass-gr is monoidal.

B.2.3. We also use

∏
: Cgr → C

to denote the right Kan extension along

Zset → pt.

Namely

∏
((Vn)n∈Z) =

∏
Vn.
n∈Z
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B.2.4. Adding a co-filtration
We will use

addCoFil : C → CcoFil

to denote a functor defined as follows: for an object V in C,

addCoFil(V )n =
{
V, when n ≥ 1,
0, otherwise.
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