
An Abstraction-Refinement Methodology
for Reasoning about Network Games ∗

Guy Avni
IST Austria

guy.avni@ist.ac.at

Shibashis Guha
The Hebrew University
shibashis@cs.huji.ac.il

Orna Kupferman
The Hebrew University

orna@cs.huji.ac.il

Abstract
Network games (NGs) are played on directed
graphs and are extensively used in network design
and analysis. Search problems for NGs include
finding special strategy profiles such as a Nash
equilibrium and a globally optimal solution. The
networks modeled by NGs may be huge. In for-
mal verification, abstraction has proven to be an
extremely effective technique for reasoning about
systems with big and even infinite state spaces.
We describe an abstraction-refinement methodol-
ogy for reasoning about NGs. Our methodology
is based on an abstraction function that maps the
state space of an NG to a much smaller state space.
We search for a global optimum and a Nash equi-
librium by reasoning on an under- and an over-
approximation defined on top of this smaller state
space. When the approximations are too coarse to
find such profiles, we refine the abstraction func-
tion. Our experimental results demonstrate the effi-
ciency of the methodology.

1 Introduction
Network design is a fundamental and well-studied problem.
A game-theoretic approach to the analysis of network design
has become especially relevant with the emergence of the In-
ternet, where different users share resources like software or
communication channels [21; 1; 4]. Network games (NGs,
for short) [4; 34; 35] constitute a well studied model of non-
cooperative games. The game is played among selfish play-
ers on a network, which is a directed graph. NGs are used to
model resources as edges in a network and the cost involved
in sharing these resources. Each player has a source and a
target vertex, and a strategy is a choice of a path that connects
these two vertices. The cost a player pays is the sum of costs
of the edges his path traverses, where a cost of an edge de-
pends on the load on it, namely the number of players using

∗The research leading to these results has received funding from
the European Research Council under the European Union’s Seventh
Framework Programme (FP7/2007-2013, ERC grant no 278410)
and the Austrian Science Fund (FWF) under grants S11402-N23
(RiSE/SHiNE) and Z211-N23 (Wittgenstein Award).

the edge. We distinguish between two types of costs. In cost-
sharing games [4], each edge has a cost and the players that
use it split the cost among them, thus increased load decreases
the cost. For example, when the costs correspond to prices,
users that share a resource also share its price. Then, in con-
gestion games [34], increased load increases the cost: each
edge has a non-decreasing cost function that maps the load
on the edge to its cost given this load. For example, when
the network models a road system and costs correspond to
the travel time, an increased load on an edge corresponds to a
traffic jam, increasing the cost of the players that use it.

Since the players attempt to minimize their own costs, they
selfishly select a path. The focus in game theory is on the sta-
ble outcomes of a given setting. The most prominent stability
concept is that of a Nash equilibrium (NE): a profile (vec-
tor of strategies, one for each player) such that no player can
decrease his cost by unilaterally deviating from his current
strategy; i.e., assuming that the strategies of the other players
do not change.1 By [34], there exists an NE in every NG. A
social optimum (SO) is a profile that minimizes the sum of
the players’ costs; thus the one obtained if the players would
have obeyed some centralized authority.

Finding SO and NE profiles is a complex and well studied
problem. Finding an SO is NP-complete [40; 33], and finding
an NE is PLS-complete [22; 39] (the complexity class PLS
contains local search problems with polynomial time search-
able neighborhoods [30]). These high complexities become
more acute if we recall that NGs often model huge networks.

The need to cope with very large models is a major re-
search area in formal verification. There, we check that a sys-
tem satisfies its specification by translating the system into
some formal model, typically a labeled state-transition graph,
and applying model-checking procedures on this model [17].
One of the most successful methodologies for reasoning
about the huge state space of systems is abstraction [18;
32], where we hide some of the information about the sys-
tem. This enables us to reason about systems that are much
smaller, yet it gives rise to approximated solutions. Indeed,
hiding of information may result in an under-approximating
system: one that has fewer behaviors than the original sys-

1Throughout this paper, we consider pure strategies, as is the
case for the vast literature on NGs. Unlike mixed strategies, pure
strategies may not be drawn from a distribution.

tem, or in an over-approximating system: one that has more
behaviors than the original system. Abstraction methodolo-
gies use both types of approximations [19; 11; 38].

An important step in methodologies that are based on ab-
straction is refinement. Assume for example that we find that
an over-approximation of the system does not satisfy a uni-
versal property. That is, the over-approximation has a for-
bidden behavior. It may be that this forbidden behavior ex-
ists also in the concrete system, in which case the verifica-
tion algorithm terminates and reports a bug in the system.
But it may also be that the forbidden behavior exists only
in the over-approximation, thus the counterexample is spuri-
ous. Then, one can use the spurious counterexample in order
to refine the over-approximation in a way that eliminates it,
and repeat model-checking until either a real counterexam-
ple is found, or the over-approximation satisfies the property.
This methodology, of counterexample guided abstraction-
refinement (CEGAR) has proven to be very effective [16].

Abstraction has been studied in the context of extensive-
form games. These games are different from ours both in
terms of how the game is played and the questions studied.
A strategy for a player in an extensive-form game prescribes
which action to perform, given the histories of actions played
so far. NGs, on the other hand, are “one-shot” games. The
questions studied on NGs focus on stable outcome whereas
in extensive-form games one often tries to find an optimal
strategy for a player. The abstraction studied in [24; 25;
10] tries to merge states in the game tree that are indis-
tinguishable for the players. The idea of merging config-
urations due to hidden information is the key also in ab-
stractions used in formal methods, yet the technical de-
tails are very different. Then, in action abstraction [10;
26], some of the actions of the players are disabled, reducing
the state space of reachable configurations in the game tree,
which is again not similar to the approach taken here. Finally,
formal methods often involves reasoning about multi-player
games, and abstraction-refinement methodologies have been
studied in this setting [29; 20; 8]. Such games, however,
model on-going interactions between processes, say a sys-
tem and its environment, and are infinite-duration games, thus
they are again different from the NGs we study here.

In this paper we introduce and study an abstraction-
refinement methodology for reasoning about network games.
Given an NG N defined over a network 〈V,E〉, an abstrac-
tion function for N is a function α : V → A, for some set
A of abstract vertices. We assume that A is smaller than
V , thus the function α induces a partition of V . We de-
fine the under-approximation of N with respect to α, de-
noted N ↓[α], and the over-approximation of N with re-
spect to α, denoted N ↑[α]. Both approximations are NGs
that have A as their set of vertices. The under- and over-
approximation is in the definition of the edges and the cost
functions. Intuitively, N ↓[α] is less appealing to the play-
ers than N : they have fewer possible profiles, and the pro-
files that are possible are at least as expensive as the ones
that correspond to them in N . Accordingly, the edges under-
approximate these in N : there is an edge from an abstract
vertex a to an abstract vertex a′ if all the concrete vertices
that are mapped by α to a have an edge to a concrete ver-

tex that is mapped by α to a′ (a.k.a. must transitions [32;
19]). In addition, the cost of an abstract edge is essentially
the maximal cost of a concrete edge that induces it. Dually,
N ↑[α] is more appealing to the players: they have more and
cheaper profiles than in N . Accordingly, the edges in N ↑[α]
over-approximate these in N : there is an edge from a to a′
if some concrete vertex that is in a has an edge to some con-
crete vertex that is mapped to a′ (a.k.a. may transitions), and
the cost of an abstract edge is essentially the minimal cost
of a concrete edge that induces it. Traditional abstraction-
refinement methodologies in formal verification focus on the
transition relation. An extension that takes costs into account
has been studied in [5], where the costs of a weighted automa-
ton are also abstracted. Here, we take into account the cost
functions as well as the load. Indeed, the merging of edges
may lead to a spurious increased load in the abstraction.

We show how N ↓[α] and N ↑[α], which may be signifi-
cantly smaller than N , can be used in order to reason about
the SO and the NE profiles of N . Our methodology is based
on the observation that each profile in N ↓[α] can be mapped
to at least one profile inN with a lower or equal cost, and that
each profile in N can be mapped to a profile in N ↑[α] with a
lower or equal cost. Hence, for example, the cost of the SO
in N is bounded from above and below by the costs of the
SOs in N ↓[α] and N ↑[α], respectively. Moreover, refining
α tightens these bounds, so the user can control the trade-off
between preciseness and complexity.

A more technically-involved use of the under- and over-
approximations is an algorithm we present for finding an
NE in N . The algorithm, which can be viewed as the NG-
analogue of CEGAR, is based on the notion of an abstract
NE: we say that a profile P in N ↓[α] is an abstract NE if
no player has a beneficial deviation from P even in N ↑[α].
Intuitively, an abstract NE has to face two challenges. First,
the profile P has to exist in the under-approximation, where
fewer strategies exist. In addition, deviations from P are pos-
sible in the over-approximation, where more strategies exist,
and their cost is lower. Consequently, as we shall formally
prove, an abstract NE can direct the search for a concrete NE:
once we find an abstract NE P in N ↓[α], it is guaranteed
that a concrete NE exists inN when restricted to profiles that
agree with P . Our algorithm finds an abstract NE if one ex-
ists and then directs the search for a concrete NE in a much
smaller state space. It is however not necessary that an ab-
stract NE exists in every abstract game. When a candidate
profile in N ↓[α] is an NE in N ↓[α] but is not an abstract NE
in N , we use the spurious deviations of the players in N ↑[α]
in order to refine α, which narrows the search space.

Our experimental results demonstrate the efficiency of the
methodology. The results show that the overhead required for
abstraction becomes more negligible for larger systems.

This work belongs to a line of works that transfer concepts
and ideas between the areas of formal verification and algo-
rithmic game theory: logics for specifying multi-agent sys-
tems [3; 14], studies of equilibria in games related to synthe-
sis and repair problems [13; 12; 23; 2], and of non-zero-sum
games in formal verification [15; 9]. Closest to this work are
works that apply ideas from formal verification of NGs. This
includes an extension of NGs to objectives that are richer than

reachability [6], NGs in which the players select their paths
dynamically [7], and efficient reasoning about NGs that are
structures in a hierarchical manner [31].

2 Preliminaries
2.1 Network Games
A network is a tuple 〈V,E〉, where V is a set of vertices
and E ⊆ V × V is a set of directed edges. For an inte-
ger k ∈ IN, let [k] = {1, . . . , k}. A network game (NG) is
N = 〈k, V,E, {le}e∈E , 〈si, ti〉i∈[k]〉, where k is the number
of players; 〈V,E〉 is a network; for e ∈ E, the cost function
le : [k]→ IR≥0 maps the load on edge e, namely the number
of players that use edge e, to the cost each of them pays for us-
ing e with this load; and for i ∈ [k], the pair 〈si, ti〉 ∈ V × V
describes the objective of Player i: traversing N from the
source vertex si to the target vertex ti.

We distinguish between two types of cost functions. In
uniform cost-sharing games (CS-NGs, for short) the players
that use an edge share its cost equally. Formally, each edge e
is associated with a weight we ∈ IR≥0, and for all x ∈ [k], we
have le(x) = we

x . Thus, increasing the load in uniform cost-
sharing games decreases the cost of the players. In contrast,
in congestion games (CON-NGs, for short), the cost functions
are non-decreasing, thus increasing the load also increases the
cost for each player.

A strategy of a player i ∈ [k] is a simple path π from si to
ti. Thus, π = 〈v1, v2〉, 〈v2, v3〉, . . ., 〈vn−1, vn〉, with v1 =
si, vn = ti, and (vj , vj+1) ∈ E for all 1 ≤ j < n. A
profile is a tuple of strategies, one for each player. Consider
a profile P = 〈π1, π2, . . . , πk〉 in the game. We sometimes
refer to a path as the set of edges that it traverses, thus π ⊆ E.
For an edge e ∈ E, we use loadP (e) to denote the number
of players that traverse the edge e in P . Each player that
uses e then pays le(loadP (e)), and the cost of Player i in P ,
denoted costi(P), is

∑
e∈πi le(loadP (e)). The cost of the

profile P , denoted cost(P), is the total cost incurred by all
the players, i.e., cost(P) =

∑k
i=1 cost i(P). For a profile P

and a strategy π of player i ∈ [k], let P [i ← π] denote the
profile obtained from P by replacing the strategy for Player
i by π. Given a profile P = 〈π1, . . . , πk〉, a best response
(BR, for short) of a player, say Player k, in profile P is a
strategy π′k such that for all strategies π of Player k, we have
that costk(P [k ← π′k]) ≤ costk(P [k ← π]).

Formally, a profile P is an NE iff for every Player i and
every strategy π, we have cost i(P [i ← π]) ≥ cost i(P). A
social optimum (SO) of a game N is a profile that attains the
minimal cost over all profiles. We denote by SO(N) the cost
of an SO profile; i.e., SO(N) = minP cost(P). An SO can
be thought of as an optimal solution imposed by a centralized
authority, and need not be an NE.

2.2 Abstraction and Refinement
Consider an NGN = 〈k, V,E, {le}e∈E , 〈si, ti〉i∈[k]〉. We re-
fer to V as the set of concrete vertices. Let T = {t1, . . . , tk}.
An abstraction function forN is a function α : V → A, for a
set A of abstract vertices. We assume that T ⊆ A and that α
is such that for all ti ∈ T , we have α(ti) = ti and α(v) 6= ti

for all v 6= ti. We also assume that A is smaller than V , thus
the function α induces a partition of V (with a singleton {ti}
for each ti ∈ T). Accordingly, we sometimes refer to abstract
vertices as sets of concrete vertices. In particular, when α is
clear from the context, we use v ∈ a, for v ∈ V and a ∈ A,
to indicate that α(v) = a.

Consider the NG N and an abstraction function α. We
define the under- and over-approximation of N formally.
Given N , α, and b ∈ {↓, ↑}, we define N b[α] =
〈k, V,Eb, {lbe}e∈Eb , 〈α(si), α(ti)〉i∈[k]〉, where the under-
and over-approximating transition relationsE↓, E↑ ⊆ A×A,
and the under- and over-approximating cost functions l↓e and
l↑e are defined as follows.

Transition relations: Consider two abstract vertices a, a′ ∈
A. Then, E↓(a, a′) iff for every concrete vertex v ∈ a,
there is a concrete vertex v′ ∈ a′ such that E(v, v′). Also,
E↑(a, a′) iff there exist concrete vertices v ∈ a and v′ ∈ a′
such that E(v, v′). Note that E↓ ⊆ E↑. For simplicity, we
omit self-loops from E↓ and E↑, as they are not going to be
used anyway in strategies. We follow the common terminol-
ogy in formal verification and refer to the under- and over-
approximating edges as must and may edges, respectively.
We extend α to edges in the expected way. Thus, α(h), for
an edge h = 〈v, v′〉 ∈ E, is 〈α(v), α(v′)〉. Note that α(h) is
always in E↑ and may not be in E↓.

Cost Functions: The definition of the under- and over-
approximating cost functions depends on the type of N . We
first describe the definition and then explain it.

• If N is a CON-NG, then

– for every e ∈ E↓ and x ∈ [k], we have l↓e(x) =
max{lh(x) : e = α(h)}, and

– for every e ∈ E↑ and x ∈ [k], we have l↑e(x) =
min{lh(1) : e = α(h)}.

• If N is a CS-NG, then

– for every e ∈ E↓ and x ∈ [k], we have l↓e(x) =
max{lh(1) : e = α(h)}, and

– for every e ∈ E↑ and x ∈ [k], we have l↑e(x) =
min{lh(x) : e = α(h)}.

The idea behind the definition is as follows. Recall that
in the under-approximation N ↓[α], we want the strategies to
be more expensive. This is why we take, in l↓e , the maxi-
mal cost of edges that induce e. In CON-NGs, the cost in-
creases with load and hence the cost function l↓e depends on
x since we want more expensive profiles. In CS-NGs, we
ignore x and assume that the load is 1. To see why, recall
that an abstract edge e ∈ E↓ is obtained by merging sev-
eral concrete edges. Consequently, the load on e is the sum
of the loads on these concrete edges. This load is fake: it is
only due to the merging of concrete edges and not due to an
actual increased load. In CON-NGs, where the cost func-
tions increase with an increased load, fake load goes well
with generating more expensive profiles. In CS-NGs, how-
ever, increased load decreases the cost, and we have to can-
cel the fake load. This is done by dividing the load by it-
self, which bounds the fake load. Recall that in a CS-NG N ,
each edge h ∈ E has a weight wh such that lh(x) = wh

x .

Thus, as lh(1) = wh, the definition is equivalent to one with
l↓e(x) = max{wh : e = α(h)}.

Dually, the over-approximating cost function aims at pro-
viding cheaper strategies. Accordingly, l↑e depends on the
minimum cost function of edges that induce e. Here, we have
to cancel fake load in CON-NGs, as fake load increases the
cost and may cause the cost of an abstract edge to go beyond
the cost of the concrete edges that induce it.

When α is clear from the context, we denoteN b[α] byN b.
When we refer to the cost of a profile P in N b, we use the
notation costb(P), to emphasize that the profile P is in N b.
In Figure 1, we show an NG on the left and an abstraction to
the right.

s

v1

v2

v3

v4

v5

v6

t

t
′

4x

2x

x

x

5x

s

a1

{v1}

a2

{v2, v3}

a4

{v4}

a5

{v5, v6}

t

t′

2x
2

4x
4

5x
1

Figure 1: A CON-NG N (left) and its approximations N ↓
and N ↑, which share the same state space (right). Edges in
E↓ are solid. Edges in E↑ \ E↓ are dashed. Edges with no
specified cost have cost 0.

Let us emphasize the confusing fact that when we talk
about an under-approximation, we take the maximum cost.
This may seem counterintuitive. In order not to get confused,
recall that the thing we are approximating is the range and at-
tractiveness of possible profiles. In an under-approximation,
we want both fewer and more expensive profiles. Dually,
in an over-approximation, we take the minimum cost, as we
want more and cheaper profiles. A similar intuition applies
for the adjustment of the load.

Definition [Abstract NE] A profile P = 〈π1, . . . , πk〉 inN ↓
is an abstract NE if no player has a beneficial deviation from
P even inN ↑. Formally, for all i ∈ [k] and strategies π′i 6= πi
of Player i in N ↑, we have cost↓i (P) ≤ cost↑i (P [i← π′i]).

Intuitively, an abstract NE has to face two challenges. First,
the profile P has to exist in the under-approximation, where
fewer strategies exist. In addition, existence of deviations
from P is checked in the over-approximation, where more
strategies may exist, and their cost is lower. Consequently,
as we shall formally prove in Theorem 3, an abstract NE can
direct the search for a concrete NE: once we find an abstract
NE P in N ↓, it is guaranteed that a concrete NE exists in
N when restricted to profiles that agree with P . Formally,
given an NG N and a profile P in N ↓, the restriction of N
to P is the NG N|P = 〈k, V|P , E|P , {le}e∈E|P , 〈si, ti〉i∈[k]〉,
where V|P = {v ∈ V : α(v) appears in a strategy in P} and
E|P = {〈v, v′〉 ∈ E : 〈α(v), α(v′)〉 appears in a strategy in
P}.

The generation of N ↓ and N ↑ depends on the way N is
given. When N is given in a succinct presentation, it is of-
ten possible to construct N ↓ and N ↑ on top of this succinct
presentation. Of special interest, especially in the context of
software-defined networks [41], are NGs in which V = 2X

for some set X of variables. Then, abstraction functions are

based on predicates on the variables in X , and the construc-
tion ofN ↓ andN ↑ is done on top of this succinct presentation
N that is based on the variables in X .

Consider two abstraction functions α1 : V → A1 and α2 :
V → A2. We say that α2 refines α1, denoted α2 � α1, if
for all concrete vertices v and v′, if α2(v) = α2(v

′), then
α1(v) = α1(v

′). That is, the partition of V that is induced by
α2 refines the partition induced by α1.

3 On Abstract SOs and NEs
In this section we study the theoretical properties of ab-
straction in NGs and show how reasoning about the (much
smaller) under- and over-approximations of an NG N can be
used for bounding the cost of an SO and for directing the
search for an NE in N . We first relate strategies and profiles
in N with strategies and profiles in its approximations.

Consider a network N and a strategy π of Player i in
N . The strategy α(π) that corresponds to π in N ↑ is
obtained from π by replacing each concrete edge h by
the abstract edge α(h), and removing cycles in the ob-
tained path in N ↑. Note that by the definition of E↑,
the edge α(h) exists in N ↑. Formally, we define α(π)
as follows. Let π = 〈v1, v2〉, 〈v2, v3〉, . . ., 〈vn−1, vn〉.
We first define α′(π) = 〈α(v1), α(v2)〉, 〈α(v2), α(v3)〉,
. . . , 〈α(vn−1), α(vn)〉. Then, α(π) is obtained from α′(π)
by removing cycles; that is, by repeatedly removing subse-
quences 〈α(vj), α(vj+1)〉, . . ., 〈α(vj+m), α(vj+m+1)〉 with
α(vj) = α(vj+m+1). A profile P = 〈π1, . . . , πk〉 in N cor-
responds to the profile α(P) = 〈α(π1), . . . , α(πk)〉 in N ↑.

Consider now a strategy π = 〈a1, a2〉, 〈a2, a3〉, . . .,
〈an−1, an〉 of Player i in N ↓. By the definition of E↓, for
every concrete vertex v with α(v) = a1, and in particular for
si – the source vertex of Player i, there is a path in N from v
to some vertex v′ with α(v′) = an−1. Also, by the definition
of N ↓, we have that an = ti – the target vertex of Player i2,
and for all the concrete vertices v′ with α(v′) = an−1, we
have E(v′, ti). Hence, the strategy π in N ↓ induces at least
one path π′ = 〈v1, v2〉, 〈v2, v3〉, . . . , 〈vn−1, vn〉 in N such
that v1 = si and vn = ti. Let α−1(π) be the nonempty set of
these paths. Finally, a profile P = 〈π1, . . . , πk〉 in N ↓ corre-
sponds to the set α−1(P) of profiles P ′ = 〈π′1, . . . , π′k〉 inN
in which for all i ∈ [k], we have π′i ∈ α−1(πi).

We now relate the costs of corresponding profiles in N ,
N ↓, and N ↑.
Lemma 1 Consider an NG N and an abstraction function
α.

1. For every profile P inN , the profile α(P) inN ↑ is such
that cost↑(α(P)) ≤ cost(P).

2. For every profile P in N ↓ and profile P ′ ∈ α−1(P) in
N , we have that cost(P ′) ≤ cost↓(P).

Theorem 1 For every NG N and abstraction function α, we
have SO(N ↑[α]) ≤ SO(N) ≤ SO(N ↓[α]).

2For readers who wonder why we have required each target ver-
tex to constitute a singleton set in the partition induced by α, this is
the point where this requirement is used. Indeed, the corresponding
strategies in N only reach some state in α(ti).

Recall that given two abstraction functions α1 and α2,
if α2 refines α1, then we can view N ↓[α1] as an under-
approximation of N ↓[α2], and view N ↑[α1] as an over-
approximation of N ↑[α2]. Accordingly, Theorem 1 can be
viewed as a special case of Theorem 2 below, with α2 being
the most refined abstraction function (that is, α2 : V → V ,
with α2(v) = v), and α1 being the refinement function α
studied there.

Theorem 2 Consider an NG N and two abstraction func-
tions α1 and α2. If α2 � α1, then SO(N ↑[α1]) ≤
SO(N ↑[α2]) and SO(N ↓[α2]) ≤ SO(N ↓[α1]).

Theorem 1 enables us to approximate the cost of an SO in
N using the costs of the SO in the much smallerN ↓ andN ↑.
We now turn to study how N ↓ and N ↑ can be used in order
to direct the search for an NE in N .

Theorem 3 Consider an NG N , an abstraction function α
for it, and an abstract NE P in N ↓[α]. There exists a profile
in α−1(P) that is a concrete NE in N .

Note that profiles in α−1(P) can be searched for in N|P .
Thus, as we elaborate in Section 4, an NE in N can be found
by a sequence of best response moves restricted to N|P .

4 An Abstraction-Refinement Procedure for
Finding an NE

In this section we describe an abstraction-refinement proce-
dure for finding an NE in an NG . The input to the procedure
is a concrete NG N and an abstraction function α for it. Ex-
perience in formal verification suggests that abstraction func-
tions that are supplied by users familiar with the network, are
the most successful ones. Alternatively, one can start with a
coarse abstraction and refine it as we do in Section 5.

The output of the procedure is a concrete NE in N . Since
the state space ofN ↓ andN ↑ is much smaller than that ofN ,
we would like to perform as many as possible computations
on the approximating networks. Our procedure (see Fig. 2
for an overview) consists of two parts. The first, in which
an abstract NE Pα is found, is done entirely in N ↓ and N ↑,
and it is the procedure we have implemented. The second,
in which a concrete NE is found, is done in N , restricted to
N|Pα . Thus, as is the case of the CEGAR methodology in for-
mal verification, there is no way to avoid N entirely, yet we
can significantly restrict the part of it in which the search pro-
ceeds. Moreover, it is possible to refine α and tighten N|Pα
further. In Section 5, we show that the restriction indeed sig-
nificantly reduces the size of the network.

There are many ways to refine an abstraction; one can work
naively, choose an arbitrary abstract vertex and split it in some
way, possibly by adding predicates that appear in the descrip-
tion of the network or the strategies. Even such a naive re-
finement is guaranteed to eventually lead to a solution. The
challenge is to choose the refinements cleverly so that a con-
crete answer is obtained when the approximating networks
are still much smaller than the concrete one. In CEGAR, the
refinement is guided by a spurious counterexample. We fol-
low this idea by always refining according to some path in the
network that points to a spurious behavior of the approxima-
tions. We now describe the methodology in detail.

Find an NE 1

∃i, π′i 6= πi s.t.

cost↑i (P
′
α) < cost↓i (Pα)

2π′i is spurious 3a

AbsNE-loop

Find P = 4

and find an abstract NE

6b

ConcNE-loop

〈τ1, ..., τk〉 ∈ α−1(Pα)

No: Pα = 〈π1, ..., πk〉

Yes

No:P is an NE

YesRefine α to α′ using τ ′i

Pα = 〈π1, ..., πk〉 in N ↓[α]

P ′α = Pα[i← π′i]

is an abstract NE

3b

cost↓i (P
′
α) > cost↑i (P

′
α)

3c

cost↓i (Pα) > cost↑i (Pα)

∃i, τ ′i ∈ α−1(πi)
s.t. costi(P) > costi(P

′)

5

P ′ = P [i← τ ′i]with input N|Pα
and α′

Input: N and α

Output P : P is a
concrete-NE

Refine α using one or
more of the following.

using the AbsNE-loop

N =N|Pα

and α=α′

Continue the search for an
NE from P by using
one of the following.

6a
by setting P = P ′

in N

Perform a BRD step

Figure 2: Finding an NE in N .

4.1 Part 1: AbsNE-loop, finding an abstract NE
In the first part, our goal is to find, given N and α, an ab-
stract NE. Recall that such a profile is an NE in N ↓ that is
resistant to deviations of the players even in N ↑. Since N ↓
is an NG, it has an NE. In Step 1 in Fig. 2, we find such an
NE Pα. This is done by the user’s favorite algorithm for find-
ing an NE in NGs. The important point for us is that this is
done in the (much smaller) under-approximation ofN . Then,
in Step 2, we check whether Pα is an abstract NE. Thus,
we check whether players have beneficial deviations in N ↑.
Again, this is done in the (much smaller) over-approximation
of N . If no player has a beneficial deviation in N ↑, then Pα
is an abstract NE, we conclude this part of the procedure, and
move to Step 4. Otherwise, there is a player i ∈ [k] who can
benefit from deviating to a strategy π′i.

We use π′i in order to guide the refinement. There are sev-
eral reasons why Pα is an NE inN ↓ yet not an abstract NE in
N . Step 3 consists of three possible refinement steps among
which the user can choose, corresponding to the above dif-
ferent reasons. Let us start with Step 3a. Since π′i is a path
in N ↑, there might not be a concrete path in N that corre-
sponds to it, thus π′i is a spurious path. Consider two adjacent
abstract vertices a1 and a2 that π′i traverses. If the edge be-
tween a1 and a2 is in E↑ \E↓, we can split a1 into a′1 and a′′1
such that a′1 contains exactly the vertices that have a neighbor
in a2 (similarly we can split a2). Note that after refinement,
there is a must edge from a′1 to a2 and there is not even a may
edge between a′′1 to a2. Since π′i is spurious, such a candidate

vertex is guaranteed to exist. (We note that disconnectivity in
N ↓ can be treated in a similar way.)

We continue to Steps 3b and 3c. They have to do with
under- and over-approximations of the cost functions that
cause π′i to be a beneficial deviation in N ↑. By the defi-
nition of l↓ and l↑, we know that if cost↓i (Pα[i ← π′i]) >

cost↑i (Pα[i ← π′i]), then the path π′i traverses an abstract
edge e ∈ E↓ with load x for which l↓e(x) > l↑e(x). As-
sume that e = 〈a1, a2〉. In Step 3b, we split a1 or a2 in
order to tighten this gap. Finally, it may be that the cost of
the strategy of Player i in Pα is too big. In Step 3c, we use
the strategy πi that Player i chooses in Pα in order to guide
a similar refinement in order to tighten the gap in the costs
between cost↓i (Pα) and cost↑i (Pα).

A refinement step can be a single refinement or a combina-
tion of the refinements that are described above. After com-
pleting such a step, we return to Step 1 and find a new NE in
the new under-approximating N ↓, and repeat the process.

4.2 Part 2: ConcNE-loop, finding a concrete NE
The second part of the procedure gets an abstraction function
α as well as an abstract NE Pα = 〈π1, . . . , πk〉. The goal is to
find a concrete NE P in N such that P ∈ α−1(Pα). By The-
orem 3, such an NE exists. Recall the best-response dynamics
(BRD) algorithm for finding an NE in NGs in which we start
with an arbitrary profile, and iteratively allow the players to
perform beneficial deviations. We follow this algorithm and
start in Step 4 with an arbitrary profile P = 〈τ1, . . . , τk〉 in
α−1(Pα). If P is an NE, we are done. Otherwise, there is a
concrete beneficial deviation τ ′i for some Player i. Note that
by Theorem 3, we can restrict the deviations of Player i to
paths in α−1(πi). If the size of N|Pα is small, the user can
choose Step 6a and try and find an NE in α−1(Pα) by per-
forming a BRD step. However, when N|Pα is big, it makes
sense to refine the abstraction by choosing Step 6b.

In Step 6b, we let the deviation τ ′i guide the refinement. We
look for a vertex v from which τi and τ ′i differ, thus from v,
one path continues with a vertex v′ while the other with v′′,
where v′ 6= v′′, yet α(v′) = α(v′′). We refine the abstraction
function by splitting α(v′) so that v′ and v′′ are no longer in
the same abstract vertex. We would like to have as many must
edges as possible between the new vertices. One way to do it
is to make v′′ a singleton abstract state, but it is also possible
to split α(v′) as well as α(v) to achieve this. Once we con-
clude a refinement, we return to the first part of the procedure,
and look for an abstract NE with the new abstraction.

5 Experimental Results
We have implemented our methodology and tested the perfor-
mance of its AbsNE loop on randomly-generated cost-sharing
games. We examined the benefit of the abstraction, namely
we compared the size of the original game with the game that
is truncated to the abstract-NE we find. We also examined the
practicality of our approach, namely the number of CEGAR
iterations until an abstract NE is found. We studied these
questions for different parameters of the game; size of the
graph, range of weights, and number of players. Our imple-
mentations are in Python, we use the library Networkx [28]

for graph generation and graph algorithms, and we ran our
experiments on a personal computer, Intel Core i5 quad core
1.75 GHz processor, with 8 GB memory. Our results are en-
couraging: we are able to find an abstract NE relatively easily
and it significantly reduces the size of the network making it
easier to find a concrete NE.

We generate a random game, given the parameters
n,w, k ∈ IN and p ∈ [0, 1]. We use the Erdős-Réyni G(n, p)
model to generate the network. Then, for each edge in the
graph, we choose at random a cost in a set {0, . . . , w}. For
each player i ∈ [k], we choose at random a source vertex si
and a reachable target vertex ti. For the initial abstraction,
we choose, for i ∈ [k], a shortest path πi between si and ti,
and we let every vertex that πi traverses be a singleton ab-
stract state. Thus, in the under approximation, we have at
least one path from si to ti. All other concrete vertices are
mapped to one abstract state.

We perform three types of experiments. We focus on the
number |V | of vertices in the concrete network, the number k
of players, and the range |W | of weights on the edges. The
number of edges is approximately 1/2 · |V |2. We fix two
of the parameters and increase the third. In Fig. 3, we see
how increasing one of the parameters affects the number of
iterations of the CEGAR loop. In Fig. 4, we compare the sizes
of the truncated network, namely, α−1(Pα), and the original
one; we show the ratio between the number of vertices in the
two networks and the ratio between the number of edges.

Figure 3: The number of iterations (y-axis) as |V |, k, and
|W | increase (x-axis).

Figure 4: The ratio between the size (vertices - blue lines and
edges - red lines) of the concrete and truncated networks as
|V |, k, and |W | increase.

We find the plots of the increasing number of vertices most
encouraging. Since we fix the number of players, the part of
the network that is being “used” becomes relatively smaller
with increasing |V |, and an abstract NE has a good potential
to shrink the network. Indeed, the ratios decrease. As fur-
ther good news, the number of iterations reaches a ceiling and
does not grow with |V |. Recall how we find an initial abstrac-
tion above. When k increases, there is a growing number of
concrete vertices that are mapped to singleton abstract states
in the initial abstraction. Thus, the abstraction is closer to the
concrete network making it easier to find an abstract NE and
increasing the ratios. For increasing |W |, we believe that at
some point the large variance stops affecting the procedure.

References
[1] S. Albers, S. Elits, E. Even-Dar, Y. Mansour, and L. Roditty.

On Nash equilibria for a network creation game. In 7th SODA,
2006.

[2] S. Almagor, G. Avni, and O. Kupferman. Repairing multi-
player games. In Proc. 26th CONCUR, volume 42 of LIPIcs,
pages 325–339, 2015.

[3] R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time
temporal logic. Journal of the ACM, 49(5):672–713, 2002.

[4] E. Anshelevich, A. Dasgupta, J. Kleinberg, E. Tardos,
T. Wexler, and T. Roughgarden. The price of stability for
network design with fair cost allocation. SIAM J. Comput.,
38(4):1602–1623, 2008.

[5] G. Avni and O. Kupferman. Making weighted containment
feasible: A heuristic based on simulation and abstraction. In
Proc. 23rd CONCUR, LNCS 7454, pages 84–99, 2012.

[6] G. Avni, O. Kupferman, and T. Tamir. Network-formation
games with regular objectives. I&C, 251:165–178, 2016.

[7] G. Avni, T.A. Henzinger, and O. Kupferman. Dynamic Re-
source Allocation Games. In Proc. 9th SAGT, LNCS 9928,
pages 153–166, 2016.

[8] T. Ball and O. Kupferman. An abstraction-refinement frame-
work for multi-agent systems. In Proc. 21st LICS, 2006.

[9] T. Brihaye, V. Bruyère, J. De Pril, and H. Gimbert. On sub-
game perfection in quantitative reachability games. LMCS,
9(1), 2012.

[10] N. Brown and T. Sandholm. Simultaneous abstraction and
equilibrium finding in games. In Proc 24th IJCAI, pages 489–
496, 2015.

[11] G. Bruns and P. Godefroid. Model checking partial state spaces
with 3-valued temporal logics. In Proc. 11th CAV, pages 274–
287, 1999.

[12] K. Chatterjee. Nash equilibrium for upward-closed objectives.
In Proc. 15th CSL, LNCS 4207, pages 271–286, 2006.

[13] K. Chatterjee, T. A. Henzinger, and M. Jurdzinski. Games with
secure equilibria. TCS, 365(1-2):67–82, 2006.

[14] K. Chatterjee, T. A. Henzinger, and N. Piterman. Strategy
logic. In Proc. 18th CONCUR, pages 59–73, 2007.

[15] K. Chatterjee, R. Majumdar, and M. Jurdzinski. On Nash equi-
libria in stochastic games. In Proc. 13th CSL, LNCS 3210,
pages 26–40, 2004.

[16] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement for symbolic
model checking. Journal of the ACM, 50(5):752–794, 2003.

[17] E.M. Clarke, O. Grumberg, and D. Peled. Model Checking.
MIT Press, 1999.

[18] P. Cousot and R. Cousot. Abstract interpretation: a unified lat-
tice model for the static analysis of programs by construction
or approximation of fixpoints. In Proc. 4th ACM POPL, pages
238–252, 1977.

[19] D. Dams, R. Gerth, and O. Grumberg. Abstract interpretation
of reactive systems. ACM TOPLAS, 19(2):253–291, 1997.

[20] L. de Alfaro, P. Godefroid, and R. Jagadeesan. Three-valued
abstractions of games: Uncertainty, but with precision. In
Proc. 19th LICS, pages 170–179, 2004.

[21] A. Fabrikant, A. Luthra, E. Maneva, C. Papadimitriou, and
S. Shenker. On a network creation game. In ACM PODC,
2003.

[22] A. Fabrikant, C. Papadimitriou, and K. Talwar. The complexity
of pure nash equilibria. In Proc. 36th STOC, pages 604–612,
2004.

[23] D. Fisman, O. Kupferman, and Y. Lustig. Rational synthesis.
In Proc. 16th TACAS, LNCS 6015, pages 190–204, 2010.

[24] A. Gilpin and T. Sandholm. Better automated abstraction tech-
niques for imperfect information games, with application to
texas hold’em poker. In Proc. 6th AAMAS, pages 1168–1175,
2007.

[25] A. Gilpin and T. Sandholm. Lossless abstraction of imperfect
information games. J. ACM, 54(5), October 2007.

[26] A. Gilpin, T. Sandholm, and T. B. Sørensen. A heads-up no-
limit texas hold’em poker player: Discretized betting models
and automatically generated equilibrium-finding programs. In
Proc. 7th AAMAS, pages 911–918, 2008.

[27] A. Gilpin, T. Sandholm, and T. Bjerre Sørensen. Potential-
aware automated abstraction of sequential games, and holistic
equilibrium analysis of texas hold’em poker. In Proc, 22nd
AAAI, pages 50–57, 2007.

[28] A. A. Hagberg, D. A. Schult, and P.J. Swart. Exploring net-
work structure, dynamics, and function using NetworkX. In
Proc. 7th SciPy, pages 11–15, 2008.

[29] T.A. Henzinger, R. Majumdar, F.Y.C. Mang, and J-F Raskin.
Abstract interpretation of game properties. In Proc. 7th SAS,
LNCS 1824, pages 245–252, 2000.

[30] D. S. Johnson, C. H. Papadimtriou, and M. Yannakakis. How
easy is local search? JCSS, 37(1):79–100, August 1988.

[31] O. Kupferman and T. Tamir. Hierarchical network formation
games. In Proc. 23rd TACAS, LNCS, 2017.

[32] K.G. Larsen. Modal specifications. In Proc. Int. Workshop
on Automatic Verification Methods for Finite State Systems,
LNCS 407, pages 232–246, 1989.

[33] C. A. Meyers. Network Flow Problems and Congestion
Games: Complexity and Approximation Results. PhD thesis,
MIT, 2006.

[34] R. W. Rosenthal. A class of games possessing pure-strategy
Nash equilibria. IJGT, 2:65–67, 1973.

[35] T. Roughgarden and E. Tardos. How bad is selfish routing?
Journal of the ACM, 49(2):236–259, 2002.

[36] T. Sandholm. The state of solving large incomplete-
information games, and application to poker. AI Magazine,
31(4):13–32, 2010.

[37] J. Shi and M. L. Littman. Abstraction methods for game theo-
retic poker. In Proc. 2nd CG, pages 333–345, 2002.

[38] S. Shoham and O. Grumberg. Monotonic abstraction-
refinement for CTL. In Proc. 10th TACAS, LNCS 2988, pages
546–560, 2004.

[39] V. Syrgkanis. The complexity of equilibria in cost sharing
games. In WINE, LNCS 6484, pages 366–377, 2010.

[40] E. Tardos and T. Wexler. Algorithmic Game Theory. Cam-
bridge University Press, 2007. Chapter 19: Network Forma-
tion Games and the Potential Function Method.

[41] S. Vissicchio, L. Vanbever, and O. Bonaventure. Opportunities
and research challenges of hybrid software defined networks.
Computer Communication Review, 44(2):70–75, 2014.

	Introduction
	Preliminaries
	Network Games
	Abstraction and Refinement

	On Abstract SOs and NEs
	An Abstraction-Refinement Procedure for Finding an NE
	Part 1: AbsNE-loop, finding an abstract NE
	Part 2: ConcNE-loop, finding a concrete NE

	Experimental Results

